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Since this personal mathematical history was begun in 2011, much insight has been gained in 

my mathematical enterprise, so that I am now constructing an overarching description of 

mathematics – the eBook Superexponential algebra, in three volumes, and this interrelates 

superexponential algebra with its corresponding analogues in geometry and in logic, which 

are generalisations of the subject as it is most often taught. It is now no longer premature to 

give a history of the hyperintricate representation of matrices, for which a colleague had 

suggested I give some historical background of my mathematical journey, so that the early 

work can be put in context. 

I don’t have a degree, and my work on mathematics started in earnest in 2008 at the age of 

58, after my career as a fairly senior payroll analyst programmer at P&O Properties had 

finished. 

I introduced myself to groups and topology at the age of 15, and to general relativity at the 

age of 18. I have been a passive reader of advanced texts in mathematics and theoretical 

physics for a long time. 

The situation became more active after I had learnt what it meant to compose music, to have 

my compositions performed, and even – hoisted by my own petard when I was organising a 

concert, and the pianist for my work withdrew – playing my own compositions myself to a 

live audience. This taught me that it was possible to produce music in a style that I wished to 

present – nudging at boundaries technically, in terms of the sonorities, and in the message 

that I occasionally wanted to project – yet at the same time I had little or no formal training. 

In this I was assisted by New Music Brighton, a self help group of composers, but it still took 

5 years to get my first composition performed. To a certain extent, I was surprised by my 

own success. It showed me that it is possible to do things out of the ordinary, and yet be an 

ordinary person. That is how I developed the courage to embark on mathematical research. 

If you look at my website – well some of the early stuff is suitably brushed under the carpet – 

you will see there is an early work containing over 100 theorems on exponentiation. What I 

did, was start on something that I knew how to manipulate, and hoped I could produce results 

in – number theory. This is not very fashionable nowadays – the heyday of number theory 

was the 19
th

 century (or even before). There are no major surprises in this work, except the 

demonstrated capacity to deal with detail, and to carry an idea to its technical exhaustion. 

The first major work was what I thought would be a fairly simple task – solving an unsolved 

problem in what are called quadratic residues, using elementary methods – that is, not using 

complex numbers. A quadratic residue is the square of a number in clock arithmetic, in this 

case 12 o’clock is 0 and there are a prime number of hours. The problem I chose has been 

solved by other, transcendental methods, but it is stated by Richard Guy as an unsolved 



problem in his “Unsolved problems in number theory” book. I thought it would take me a 

month to solve it, but I had bitten off almost more than I could chew. It is still incomplete, 

other tasks intervened, and loads of calculation had to be performed for the first stage. 

Eventually I “cheated”. I looked at Hermann Weyl’s proof of the transcendental result, and 

adopted part of it, Minkowski’s lattice theory, so that its contents, but not form, were present 

in my proof. However, when I tried to submit the paper to arXiv, Steven Miller who I was in 

contact with, seemed dubious about the proof. On trying to tighten it up, once again the proof 

failed. So the proof of the failure is now in part I of the proof. Part II is quite amazing and 

beautiful – I have found patterns that I did not expect to find, because I had to look into 

greater detail because of the failure, and was looking at prime number 1031, and found 

general reasons why these patterns, or ‘parabolas’ exist. The proof is still not complete, but 

now has good prospects – I hope! The problem also seems to be related to the ‘tenth 

discriminant’ problem, which has been solved, but with great difficulty. So what I was doing 

was try to solve this difficult problem by elementary methods. 

I have been interested in my life in a number of mathematical ideas. One that caused me grief 

at university was the consistency of the real number system. This doesn’t cause me problems 

nowadays, because I am acquainted with intuitionalistic logic, and I am aware there are 

several components to the axiom system for real numbers, like for example the continuum 

hypothesis. What I have developed in the work on infinitesimals is the “Archimedean” axiom 

that any real number can be multiplied by a natural number to be greater than any natural 

number – this was known to Euclid. The real numbers do not have to conform to this, as was 

known to Poincaré, but the modern conception excludes these infinitesimals by definition, but 

there is work by Paul Cohen on the axiom of choice that allows them back in. This work has 

met quite a lot of resistance, and it has become apparent that to avoid confusion, I have to use 

another word than real, so I have chosen ladder number. There are two differences to my 

definition; ladder numbers are not well-ordered, and I am using uncountable induction, a 

technique that was used by Gentzen in the 1930’s, in circumstances where the theory of real 

numbers does not allow it; they are constructible. The model I use has multiple versions of 

sets with internal and external ordering. I have put the work on a basis so that the 

assumptions are clear, so it should be evident that I am not challenging conventional proofs, 

but I still might not have acceptance of the axioms I am using. A second work on a similar 

theme is to allocate zero divided by zero to the set of real numbers. 

This work, which was described in the eBook Innovation in mathematics, has now reached a 

more mature stage, and is presented in the eBook Superexponential algebra. The first new 

idea is to introduce a modification of set theory I have called mZFC – modified Zermelo-

Fraenkel set theory with the axiom of choice. This redefines the empty set as satisfying a 

false condition. Set theory is not now confined to studying true statements, since if it is false, 

say for the Russell’s paradox, where we consider a set which does not contain itself, the set is 

empty. This now means we can use the principle of induction for properties. We use it to 

show rigourously that the base assumption of the continuum hypothesis is incompatible with 

the countability of the rational numbers.  



Another “problem” for me has been understanding Galois theory. My stance at first was that 

perhaps I both did and did not accept it. Here is what I said in 2011.  

The concrete part of this is that no polynomial of degree greater than 4 is “solvable by 

radicals”, and what I didn’t see, and originally I didn’t understand the proof, was where the 

information was being “lost” so that the problem was unsolvable. Because I didn’t understand 

the proof, I was trying the impossible – to solve the quintic. However, despite (usually) 

accepting this result, I believed the underlying question was still valid. The reasoning was, if 

the underlying reason is group theory – which can be reduced to permutations, and if I can 

generalise numbers so that a permutation can be represented by one of these numbers – this 

isn’t the case for complex numbers or quaternions – then can I solve the quintic. A more 

recent realisation was that what I call substitution methods are ineffective in producing 

solutions, and this is because the group theory is multiplicative, and the multiplicative part is 

to do with powers of numbers, so I have to factorise 5 into something smaller (as was stated 

by Galois), and this is possible, 5 = (2 + i)(2 – i), but in fact this doesn’r solve the quintic, we 

have to go into non-commutative numbers, which I will mention next, so that we can explore 

maps onto permutations of roots. 

Well, I now have something to say on Galois theory, as a vindication of my obdurate 

intuition, but it still came as a shock to me that the theory is wrong, even though one of its 

end results holds – no solution of the general quintic or higher degree polynomials by radicals 

is possible, which can be proved independently of group theory by using the theory of 

varieties. Basically, a polynomial can be represented in two ways, as the roots (x + a) etc. 

multiplied together, or additively as a polynomial. When it is in multiplicative form, we can 

solve it when it is set to zero. So any theory which uses only multiplication and then states 

that we cannot get a solution that way has got it wrong. This is Galois theory, and it uses 

groups. For a polynomial in additive format, we need to go beyond groups to consider rings. 

Unfortunately, when we employ what are called ring automorphisms, the group theory breaks 

down – ring automorphisms are involutions (applied twice they get back to the original root) 

and for complex numbers they are commutative: AB = BA, unlike the groups of Galois 

theory. We can confirm what we have said is correct, because if I have, say, the polynomial 

equation (x + a)(x + b)(x + c) = 0, then there is no general function just using complex 

numbers which swaps a and b and leaves c fixed – and the mantra ‘leaving c fixed’ is used 

often in Galois theory to describe its solvability results.  

Well, apart from work on division algebras, and the work of my namesake, J. F. Adams, on 

this in the 1960’s, what motivated me to introduce the hyperintricate representation was the 

search for a number system that was non-commutative, as I thought was necessary to solve 

“the impossible”, by Galois theory. I wanted something that would incorporate complex 

numbers at one end, but also be non-commutative. The idea came from R. Remmert in a book 

called Numbers (by Ebbinghaus et al), although I had looked at the matrix representation of 

quaternions in a book by Herstein before this. It gave the matrix representation of complex 

numbers. I immediately realised that an extension of this idea was possible – to introduce two 

more matrix “basis elements”, so that four basis elements would completely represent the 

four elements (by addition) of a 2 x 2 matrix. In a search for a name similar to “complex”, I 



decided on “intricate”. This is not a new idea. I later learnt it was introduced by James Cockle 

in 1849, where he called these entities coquaternions. The modern terminology is often split-

quaternions. 

What I then realised was that the idea could be extended to 2
n
 x 2

n
 matrices, in a way that was 

a completely regular extension of the 2 x 2 case, unlike the complicated classifications of Lie 

group theory, which is the usual approach (of course Lie groups as objects exist!) These I 

called “hyperintricate numbers”, by analogy with “hypercomplex numbers” introduced by 

Hamilton. I also realised that Euler’s relation e
iθ

 = cos θ + i sin θ, had an analogue for 

intricate numbers, using cosh and sinh. What I was initially unable to do was come up with a 

formula for e
p1 + qi + r + s

, where the exponents are an intricate number. The realisation of the 

correct formula for this came much later – I had inconsistencies in dealing with intricate roots 

in Galois theory, and I am not sure on how I managed to jump to the correct formula. 

On matrix Galois theory, where for complex polynomials there is always a matrix solution 

for a polynomial equation of arbitrary degree, in 2011 I made the following comments, which 

should not relate to complex coefficients, but intricate or hyperintricate ones. All this theory 

has now reached its adolescent stage, and there are quite a number of results. To continue 

with the Galois idea, I have now proved Galois restrictions hold for polynomials with J-

abelian matrix variables, using an idea called J-abelian algebra. Further development of the 

paper on this, both for explicit solutions up to degree 4 equations, and the work on 

perturbation methods, will use this idea.  

I could mention that Fermat’s little theorem (not the last theorem, although that is also of 

interest – there is work on Beal’s conjecture on the website) can be extended to hyperintricate 

numbers. I have extended results on division algebras so they deal with the sort of “non-

standard” cases which fascinate me. I would also like to mention the work on hyperintricate 

exponentiation. This follows partly from a separate idea. I have always thought the currently 

accepted ideas are strange, and in my work on this I have defined them as inconsistent. I had 

the misfortune to invent an approach to i
i
 in answering an examination question at university. 

I proved this inconsistent, and it has perplexed and frustrated me ever since. I had a friend 

who sent it on to David Bohm, the physicist, who became interested because of its 

implications for the Riemann hypothesis. The work on hyperintricate exponentiation, which 

has now reached a stage of fruition, attempts to tackle this question in detail. 

An idea I described which was recent in 2011 was a classification of nonassociative algebras 

by introducing new matrix operations using the hyperintricate representation. The reason I 

did this was because I could find no modification of standard matrix multiplication that 

produced the algebra of the octonions. Suspecting a fundamental obstruction to such a 

representation – as I had witnessed in determining solutions in noncommutative Galois 

theory, I invented the diamond and left and right roll operations, which describe in a very 

general way nonassociative intricate operations. I now suspect nonassociative applications to 

the octonion division algebra, Galois theory (I think nonassociative Galois theory might have 

some aspects of novelty), and hyperintricate exponential algebras. 



There is now some work on novanion algebras in Superexponential algebra. These are 

division algebras except for the scalar part. When the scalar part is zero, they are not division 

algebras. An idea is to use them to describe physics. We say time is the scalar part, so outside 

time zero there are no operations which will annihilate states – energy is conserved. 

There is some other work on the website. Thirty years ago I did some research on probability. 

This has now been written up, and more recent extensions have been added, finalised with 

work on the theory of sheaves and toposes. The category theory has now been removed, and 

this is part of the eBook Superexponential algebra. 

As I said in 2011, also of interest (last but not least!) is the work on branched spaces. Once 

again, this is revolutionary (if you like revolutions, they are exactly the sort of thing you 

like!). These violate the “boundary of a boundary = 0” in some pathological cases (infinite 

explosions), which is embedded in the structure of the group approach to homology and 

cohomology. I have had to go back to the history of the topic (the work of Riemann, Betti, 

Klein, Poincaré, Seifert and Threlfall, Alexandroff and Hopf, Noether and Weyl are some of 

the early works) in order to disentangle what it is about. It is clear to me now that the work of 

Mac Lane, Eilenberg, Cartan and Grothendieck are not the beginning of the subject, but its 

mid-point. A remark I would like to make is that the historical material, before 1935, looks 

natural, and the later revolutions are pedagogically not the way one would wish to introduce 

it. Having completed the popularisation part of the work – part I, I am now in the process of 

introducing a revolution again – the whole basis of the theory in part II is a polynomial – 

which idea links with my other works, and it combines homology theory (called now 

chromology to distinguish it from the conventional ideas) and homotopy theory (called now 

chromotopy) together. What comes out is a complex polynomial for the Euler-Poincaré 

characteristic – with chromotopy supplying the imaginary part. However, currently the idea 

of boundary in general chromotopy does not seem to have the same significance, whereas in 

homology this is central, as are questions of topological equivalence of simplical divisions, 

whereas general chromotopy is characterised by an expression related to one particular type 

of subdivision. This work with modifications is now under assembly in the eBook 

Superexponential algebra. 

I will end with a list of further areas to which I believe hyperintricate numbers can have an 

influence in the development of subjects: Zeta functions, L series, Fourier and wavelet 

analysis, hyperintricate analysis, classification of groups, and noncommutative rings. Areas I 

have not mentioned are practical applications. It follows that since hyperintricate numbers 

contain complex numbers on one end and matrices on the other, and these mathematical tools 

abound in science and engineering, that this is a fertile ground for further developments and 

applications. 


