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Foreword 
            

Number, space and logic is a mathematical manifesto and encyclopaedia. It unifies the subject 

using generalised diagrams between multiobjects, which are objects in many parts, linked by 

multifunctions, which are transformations from something to the same type of something in 

many pieces, and defines and unifies three ideas, all in some ways differing from current 

understandings. The first concept classifies all possible universes with space and time. The 

second states that all consistent problems have an answer, and gives methods for solving all 

such problems. The third extends our new ideas of infinity, including uncountable infinity, to 

computable models. 

We give three examples. The Irish mathematician William Rowan Hamilton discovered the 

quaternions representing space-time. This book extends the programme of Hamilton in novel 

ways which reveals that its geometrical and physical intuition, long thought to have been 

superseded, is still alive. 

George Birch Jerrard, who studied at Trinity College Dublin 1821–1827, developed methods 

on the solvability of the quintic polynomial equation  

 x5 + Qx4 + Rx3 + Sx2 + Tx + U = 0 

begun by Tschirnhaus in 1683 and Erland S. Bring in 1786, and showed that the coefficients 

of xn-1, xn-2 and xn-3 of a polynomial of degree n > 4 can always be eliminated by transforming 

the variable x. In 1859 he wrote An essay on the resolution of equations. One version contains 

an end note by James Cockle (who became governor of New Zealand) stating that Jerrard’s 

insistence that the quintic was solvable by radicals was incorrect. A radical is a number found 

from other numbers by addition, subtraction, multiplication and division, and taking nth roots. 

When n = 2 an nth root is a square root, for example √2, where √2. √2 = 2. In support of 

Jerrard, it is well known by using the Cayley-Hamilton theorem and using companion matrices, 

where a matrix is an array of numbers in rows and columns with addition and a special form 

of multiplication, that matrix solutions of polynomial equations of arbitrary large degree n can 

be directly written down. Galois solvability theory, which for over 150 years has eclipsed these 

investigations, predicts that the solution of the sextic, which is a polynomial equation of degree 

n = 6, containing duplicate roots reduces to the standard Galois case of unsolvability, the theory 

of inseparable extensions, but it can be directly shown that this sextic can be solved by radicals. 

Linear transformations of variables, where x goes to x + b, which are always used to solve 

polynomial equations of degree n < 4 cannot be accommodated in Galois theory. Galois theory 

reduces the study of solvability to multiplicative group theory based on permutations of its 

roots, where a root is a solution of a polynomial equation, but an extension of this theory to 

ring automorphisms, transformations of something to itself using + and ×, predicts that the 

swap of two roots will not in general leave a third root intact, so a correct solvability theory 

cannot be based on permutations. Nevertheless, a dependency theory, based on the special case 

of ‘killing central terms’ to obtain solutions, which says we use transformations to zeroise 

coefficients in the middle of a polynomial, shows that no general polynomial of degree > 4 is 

solvable by radicals by these means. But this does not imply that other methods, say involving 

comparison of polynomials of different types, where we equate the coefficients of a polynomial 

written in one way with a polynomial written a different way, cannot yield solutions. We will 

show both theoretically and by direct computation, that complex solutions in radicals of 

complex polynomial equations of arbitrary large degree exist. 

The Riemann hypothesis, concerning the zero values of a function called the zeta function, 

which predicts results on the distribution of primes, is proved by two methods in this book. 
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This important mathematical problem has resisted solution since it was first proposed in 1859. 

The earliest technique uses what we call Dw exponential algebras. These were developed by 

the author, and the idea was extended by the physicist David Bohm, in conversations with me 

via an intermediary, Ebrahim Baravi, in the early 1980’s. David thought that this had 

applications to the Riemann hypothesis, but at the time I did not. On reopening this research 

over 30 years later, I rediscovered this idea. It is correct. The second proof involves extending 

the idea of infinity, which was mentioned to me by a researcher on this problem, whose name 

I do not know, and he provided no other details. The techniques we have developed here quite 

independently use the idea of infinities called capital Zeta functions, Ξ(a), which have the 

property that 1Ξ(a) = a and are representable by standard techniques using complex numbers. 

These are used to incorporate the transcendental real number system within a computable 

model. We then apply this model to the Weil conjectures for finite fields in algebraic curves, 

which were developed by analogy with the Riemann hypothesis, fully proved after work by A. 

Grothendieck and co-workers by P. Deligne in a paper of 1974.  

Number, space and logic combines a practical graduate level textbook with a research project 

in a commentary and development of the mathematics of the late 20th and the 21st centuries, 

just as Superexponential algebra [Ad15] does for the 20th century before that covered in this 

work. As a guide to this, we include the mathematics needed to prove the general Riemann 

hypothesis and from it the weak Goldbach conjecture, that any odd number greater than 5 is 

the sum of three primes. There is an exposition of the theory, to be described later in this 

foreword, of zargonions, polynomial wheels and branched spaces, and as detailed in volume 

III, a proof on the consistency of analysis, which is the study of functions which are continuous, 

by extending the work of Gentzen. 

To present our work coherently we had intended to proceed from the abstract to the specific, 

and so this could be understood to give first an account of the meanings of these abstractions. 

Thinking these ideas could give an overarching description of mathematics, it was only in the 

writing of this work that I realised to my astonishment that a detailed description was available 

not only in theory, but it was being built in practice and could be presented in a unified way. 

Having retained the majority of the work as originally conceived, after a summary of this 

unified mathematics, we describe as examples our approach to the finite and the infinite, then 

how our generalisations of space fit into the theory of trees and amalgams. Superexponentiation 

develops mathematical operations beyond addition, multiplication and exponentiation. We 

show how superexponential polynomials that we call sunomials fit into an abstract description 

of mathematics where the parentheses around expressions matters, nonassociative categories 

called superstructures. 

A notion we will begin with is that of a tree, ordered from top to bottom in the example diagram  

 

 

 

 

Each parent node at the top branches to various child nodes beneath it. We give names to the 

collection of a parent and its child nodes in various contexts, for example we call this collection 

a multiobject. 

We can identify some of the nodes of the tree, so they become the same node. We call this an 

amalgam. 
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Suppose we have one amalgam. To transform this amalgam to another we link nodes in the 

first amalgam to nodes in the second. These linking transformations are described by amalgams 

themselves. Nodes of the two amalgams are identified with nodes of the linking transformation. 

We investigate a more general situation. Instead of two amalgams linked by a transformation 

which is an amalgam, we allocate different colours to a number of amalgams. These coloured 

amalgams can be treated as a multiobject. We consider other coloured amalgams, not in the 

same colour set, as linking transformations. This is the most general mathematical object we 

encounter, a xiqu, from the Chinese ‘opera’, for an English speaker pronounced like ‘shichu’.  

All mathematics is an instance of xiqus. From one point of view, xiqus express relationships in 

geometry and between numbers. From another, mathematics has gone beyond these ideas. This 

is the overarching notion we introduce in Number, space and logic. It has originated from the 

construction of many examples, which at first did not use them. We investigate, extend and 

sometimes revolutionise mathematical thinking. 

We see in history that two developments go hand in hand, the development of notions and the 

development of notational systems – ideas and the representation of ideas. If we restrict the 

way we represent things, or make this representation difficult or complicated, then we restrict 

how we think. An objective is to advance our notations by brazen analogies taken from history. 

Pictorial ideographs were replaced in early writing by phonetic cuneiform. Although words 

were not separated by spaces, this drastic simplification of writing raised mass communication 

and allowed new extensions to languages. In China, the character representation of writing 

allows communication between the languages of different parts of China. The simplification 

of the script introduced by the communists advanced mass communication and literacy, and 

makes easier the understanding of Chinese culture and civilisation internationally. 

In mathematics, reasoning with examples using numbers was replaced by using geometry 

instead as the Greeks did, where universal proofs derived from axioms describe precisely this 

geometry.  Today algebra replaces geometry. This advanced in stages. The introduction of zero 

from India allowed the completion of the number system, so that the addition of two numbers 

could be zero. Negative numbers allow the use of complex numbers through multiplicative 

completion, with a number i with i × i = –1, which has no analogue in the numbers hitherto 

considered by any human culture. This innovation took a long time to develop. Of comparable 

importance to the development of algebra was the book Kitab al-jabr wa’l muqabala [K1831], 

by the ninth-century Uzbek scientist in Baghdad, Mohammed ibn Mûsâ al-Khowârizmi, which 

is interesting socially and seems appalling to the modern reader in its easy reference to 

calculating the cost of concubines. Because he does not accept negative numbers, he introduces 

the idea of an equation. To maintain equality between two sides of an equation, so that an 

intermediate step does not go negative, a positive number is added to both sides. He employs 

a similar idea on multiplying both sides of an equation by a number. Although al-Khowârizmi 

introduces the name algebra, what he does is not algebra in the modern sense. Algebra, where 

numbers are represented by letters, is an extraordinarily late development in mathematics. 

Archimedes, in the cattle problem, knows how to manipulate simultaneous linear equations, 

but he does this using words, and his variables are white cows, black cows, yellow cows, 

dappled cows, white bulls, black bulls, yellow bulls and dappled bulls. Descartes replaced 

geometry by algebra, in that geometrical figures were replaced by coordinates. It would only 

take a few more lines to discuss the change from Roman numerals to the Arabic decimal 

system, and the introduction of differential and integral calculus. These developments of huge 

significance covering thousands of years we have been able to relate in a few lines. 
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Is it possible to push mathematics further by introducing notational revolutions of comparable 

significance? A motto from one of my schools, translated from Latin is ‘great trees from little 

acorns grow’. I am a great fan of the idea ‘start small from what you know and can do, and 

grow big’. So to try this out, what do I know?  

From my experience of music and interest in Schönberg, I know that I find his piano music not 

only difficult, but impossible to play. The reason is a large number of ‘accidentals’, which in 

Western music are sharps and flats modifying notes, as happens for a lot of serious music 

nowadays. I have a defect in the way I am able to think. I cannot process a forest of accidentals 

in music and play it in real time, although I can memorise a piece – difficult if the notes go all 

over the place. I discovered there is a simplified musical notation that gets rid of sharps and 

flats, incorporated in different shaped notes. It takes 5 minutes for a professional to learn and 

sing music from it, and it is easy to pick up. I think if I were given Schönberg to play in 

simplified notation I could do it. Why is this notation not used? Tradition! The music industry 

and academic teaching restrict the number of performers and performances. But it is desirable 

that music is not based on scarcity of these but a plentiful supply. 

In conclusion, if you simplify the symbol set then you speed up and increase comprehension. 

I want to describe three notational innovations I have introduced. They use simple symbols. 

Functions of a variable act together to form composite functions. A function f from, say, a set 

A to set B may be composed with a function g from the set B to set C. An element a of A linked 

by an arrow in f to the element b in B then continues as an arrow taken from b in B to element 

c in C. These arrows, in an analogy which is not inappropriate, are then composed to give the 

composite arrow h, shown diagrammatically below. 

 

            f           g 

 

    h 
 

The notation for these composite arrows does not normally read in the way one would expect 

from the above diagram, reading from left to right. Historically a function f acting on a variable 

x was denoted, and is still denoted today, by f(x), with x on the right. This means that when we 

compose functions they are written, unlike in the English language, from right to left. Two 

functions f and g composed together as above are written g(f(x)), or more usually since we 

often deal with associative objects where the brackets do not matter, gf(x). The information in 

the diagram above, admittedly confusingly, is usually written as 

 h = gf or h = g∘f. 

This introduces cognitive difficulties in people like me who cannot process three successive 

functions in reverse order. To ask me to understand books on category theory written in this 

way is like asking a blind person ‘do you see?’, so we adopt left to right notation using an 

underscore 

h = f_g. 

I am happy with h(x) = f_g(x). 

Mathematics is usually confined to three operations and their inverses, addition, multiplication 

and exponentiation. Multiplication is generated from repeated addition 

 a + a + … + a (m times) = a × m. 

The notation for exponentiation, a good one, was introduced by Euler 

 a × a × … × a (m times) = am. 



3/00.6 

 

We will also introduce 

 a × a × … × a (m times) = a ↑ m. 

It is now easy to see that where you put the parentheses around exponentiation matters. It is 

nonassociative 

 a ↑ ( b ↑ c) ≠ (a ↑ b) ↑ c, 

as well, of course, being noncommutative 

 a ↑ b ≠ b ↑ a. 

I asked at the age of nine what comes after exponentiation. It is called tetration. By and large 

mathematics does not use it, or higher order operations. It should. 

We will extend the operations +, which we will write as 1| or as a word “onesu” and speak as 

“onesoo”,  written as 2| or “twosu”, exponentiation ↑ as in a ↑ b more usually written as ab, 

and written with 3|, and a general nth suoperator n|.   

Usual notation Suoperator notation 

a + b a 1|b 

ab = a  b a 2|b 

ab = a  b a 3|b 

area of sphere = 4πr2 area of sphere = 4 2|π 2|(r 3|2) 
 

We note the following points. An nth suoperator generates an (n + 1)th suoperator by induction. 

Then 

 a + a + a ... + a (m terms) = am 

 (...((a ↑ a) ↑ a) ... ) (m terms) = a 4|m, 

where all the brackets are collected together from the left, or as we say, are nested on the left, 

so that, for instance for +, given by 1| 

 (...((a 1|a) 1|a) ... ) (m terms) = a 2|m, 

a general case being 

  (...((a n|a) n|a) ... ) (m terms) = a n + 1|m. 

So we have introduced n| to indicate nesting on the left, for example 

(((a n| b) n| c) … n| d) = a n| b n| c … n| d. 

For nesting on the right, we introduce a completely analogous notation, including suone, etc. 

(a |n … (b |n (c |n d))) = a |n ... b |n c |n d. 

 

What trends are discernible in mathematical notation today? Algebra has been replaced by 

diagrams. Transformations from algebraic objects to algebraic objects are represented by 

arrows. They can be commutative diagrams shown below. 

 A  B 

 

 

 A′  B′ 

A functor is an arrow of an arrow. The commutative diagram for it is better represented as 

 A  B 

 

 

 A′  B′ 

If this is the embryonic form of a change of representation from algebra to diagrams, like the 

change from geometry to algebra, how should this mathematics develop into infancy? I think 
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one of the problems with commutative diagrams is that they can get multidimensional. Here is 

a functor of a functor of a functor (a functor cubed) 

 A  B  C  D 

       

 

 A′  B′  C′  D ′ 

 E  F  G  H 

       

 

 E′  F′  G′  H′  

A bit bulky, but it gets the idea. Do you really want to represent functors in the traditional way 

for this level of complexity? 

 

We have holograms, though they are not often available yet, which can represent objects three 

dimensionally. Irrespective of that, we need a notation that deals with diagrams in dimensions 

greater than three. Maybe we have just given it. I think notational ways need to be developed 

to label these components algebraically, and the arrows between them. 

In the chapter on the meaning of the finite and the infinite, after giving new rules for set theory 

we give an overview of standard and significant results in finite and discrete number theory for 

nonstandard extensions. Firstly we discuss extended sets of positive whole numbers, which we 

call transnatural numbers. We give a description of capital Ξ functions, which can be used to 

give a model of the real numbers. This idea is employed in Volume III to give a proof of the 

general Riemann hypothesis from a local field point of view. Transfinite number theory is 

considered for the transnatural numbers 𝕄t, where the theory is an extension of finite 

arithmetic. Unlike our results in nonstandard set theory, these numbers are not two-way, or 

bijective, to the natural numbers, instead they have a transfinite number of members, but they 

share the other properties of natural numbers. They contain transfinite prime numbers and can 

be used to define transfinite rational numbers. We also deduce the inconsistency of the 

uncountable continuum, if we describe real numbers derived uniquely only from countably 

infinite sequences, where elements become arbitrarily close to one another as the sequence 

progresses. We give the standard axioms for a field, which defines the rules for addition and 

multiplication of numbers, and their inverses. Division by zero is not consistent for a field, or 

rather all numbers in it then become the same. We introduce zero algebras, which are not fields 

and contain multizeros which do have division. A detailed working out of the properties of 

algebraic systems using zero algebras is developed in volume II. We describe ladder algebra 

which reformulates and extends nonstandard analysis. Then we extend the ladder algebra of 

infinite ordinal number arithmetic to 𝕄t and its analogue for real numbers. We consider the 

irreducible ordinal infinities of ladder algebra as ordered colour sets. 

The chapter on the meaning of branched spaces connects ideas about vector spaces, their 

generalisation to modules and what we call boxes, which are n-dimensional arrays like tensors, 

to sets and logic. It considers dependent and independent probability as a logic derived from 

set theory. We look at partially ordered sets, lattices, which are logics with an order structure, 

and topology. An extension of the idea of a lattice, which for two objects a and b has one join 

a ∨ b and one meet a ∧ b, is to consider multiple meets and joins. The algebraic properties of 

these multilattices is discussed in the section on Dedekind-MacNeille completion, where new 

nodes are introduced into a multilattice to complete it back to a lattice. This can be related to 

notions of closed and open sets, where we use the ideas of respectively finished and unfinished 
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sets. A set may be simultaneously closed and open. We prefer to discuss sets which are finished 

or unfinished but not both. We discuss topology, which is a generalisation of geometry, and 

relate our discussion on lattices to Hausdorff spaces used in topology. As an example of the 

relation of sets to logic, we describe twisted and untwisted logic. We introduce our extension 

of the Euler-Poincaré characteristic used in topology (for a graph this is the number of vertices, 

minus the number of edges plus the number of faces), related to étale cohomology theory 

introduced by Grothedieck to prove the Weil conjectures. In its familiar form this appears 

restricted, although other formulations are equivalent. In its extended form it describes types 

of topology which have no analogue in standard topology. We introduce branched spaces, 

putting it this way: when a point is removed from an n-branched line, it divides into n pieces. 

An explosion is a set that contains an infinite number of branches. These are the topological 

analogues of behaviour we meet in exponential and superexponential number systems. The 

Euler-Poincaré characteristic is an instance of a superexponential polynomial, a sunomial. 

Concerning the meaning of superstructures, a big topic in the last chapter of the eBook 

Superexponential algebra [Ad15], this idea extends the repetitive process which generates 

multiplication from addition, and exponentiation from multiplication. We generate an (n + 1)th 

suoperator, short for superexponential operator, by repeating an nth suoperator. We give a 

representation of matrices called the hyperintricate representation which is used in examples. 

Features of this representation describe nonassociative, or parenthesis dependent, mathematics. 

In [Ad15] we discussed nonstandard exponential and suoperator algebras that are single valued, 

or unbranched, unlike standard such algebras. We describe general Dw suoperator algebras for 

all types. A new idea is that as well as describing suoperators starting from n = 1 for addition 

of two objects, n = 2 for multiplication, and so on, we can introduce suoperators for negative 

n. These are examples of crude suoperators which do not reduce to suoperators acting on binary 

objects. We give a description of a standard, or canonical, way of representing sunomials, the 

equivalent for suoperators of polynomials which are expressed using + and ×. A real number 

has a sunorm which is similarly real defining its size under exponentiation or a suoperator. So 

a suoperator on numbers has two items interesting to investigate: sunorms and branching.  We 

introduce for sunomials the ideas of sudifferentiation and suintegration. These are suoperator 

analogues of differentiation and integration. Then we describe the meaning of category theory 

as objects and transformations, and our extension to nonassociative transformations, which we 

call superstructure theory. These transformations, called morphisms in category theory, can be 

depicted by arrows. This theory includes a description of functors, which are arrows acting on 

arrows. Duality occurs in category theory when we reverse the direction of all arrows. Category 

theory introduces in a general and abstract way a description of an example that is so typical it 

represents all cases. This is called a universal. We come back to lattices and graphs which we 

introduced in the chapter on branched spaces, to look at them in a categorical way. We develop 

notions often used in category theory, hom-sets, adjoints, initial objects, terminal objects, 

pullbacks, equalisers and limits, their dual notions, and give concrete examples. The concept 

of a comma category and the case for superstructures is given. A categorical description of a 

set is called a topos. We introduce sutoposes, which are their superstructural analogues. Finally 

we describe Kan extensions, which are useful for describing sudifferentiation and suintegration 

in superstructures. 

Having built up the meaning of these abstractions, from their axioms we provide a detailed 

exposition of these ideas in reverse order: of superstructures, trees and amalgams, and the finite 

and the infinite, and look at some of their consequences. 
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Two leading ideas which are further components in this supermathematics are those of the 

nonassociative zargonions and the deconstruction of the current theory of polynomial equations 

and its replacement by polynomial wheel methods, so called because I ask whether their 

implications are as important as the invention of the wheel, giving access to computable 

structures for the whole of mathematics. Our approach cannot accommodate the standard one. 

Nonabelian group theory with ab ≠ ba does not model the solution sets of abelian varieties as 

is supposed to happen in Galois theory, although there is a mapping from noncommutative 

structures to commutative ones. Our methods reveal a link between the solvability of abelian 

varieties, elliptic curves and modular forms. The problems we solve can be generalised to all 

of mathematics. Mathematics hitherto has stated that there exist undecidable problems. The 

proposition that there are consistent undecidable problems is false; we have proved that all 

consistent problems are decidable. When computable structures combine with zargonion 

superstructures, mathematics describes results in number, space and logic in full and coherent 

generality. 

This work has lain fallow whilst other work was being developed. Initial work on physics has 

taken place. I feel current social systems are incapable of dealing with these innovations. The 

problem is generic. New avenues are being developed to design social systems capable of 

dealing with innovation in the Evolutionary and Postevolutionary part of my website, which 

cross-link with the section on Neurophysiology and Conceptology. The xiqu idea can be used 

in neurophysiology but seems jargon. It can describe what we already know conceptually: cells, 

chemical release and interactions, and the interconnection of parts of the brain to form its 

whole. Putting this description in the reverse direction gives an example of a xiqu, and an 

insight of how xiqu theory can be developed. Looking at an object, it has an inside and an 

outside separated by a boundary. This is a binary division common in current mathematics. 

When objects like cells come together to form multiobjects as we do for xiqus, the idea of a 

binary partition is not always there. It is as if the boundary has been replaced by something else 

which we have yet to classify, say a multiboundary. A further idea is that these are related to 

the packing of the multiobjects together. We have met packing elsewhere, but did not at first 

connect it with xiqus. It is the sphere packings of volume I, chapter IX. We think there is a 

general subject to be developed here, and we have introduced discussion of it.  

 

Volume III in more detail 

In this volume we look more deeply into an exposition of our nonstandard outlook on the 

continuum hypothesis, and an extension of the idea of natural and rational numbers to the 

transfinite case, called respectively transnatural and transrational numbers. In this context we 

discuss class field theory and provide a Gentzen-type proof of the consistency of analysis. 

We prove Fermat’s last theorem by elementary methods, but also using standard techniques of 

the modularity theorem derived in volume I. 

We then prove the general Riemann hypothesis by two distinct methods. The first uses an 

extension of exponential algebra to the Dw exponential algebras, developed by myself and 

David Bohm, the latter in an attempt to prove the Riemann hypothesis. In [Ad15] these are 

given in the case of w an integer. In this volume we introduce imaginary Dw exponential 

algebras. These reduce to two types, the classical exponential algebra and the nonclassical. 

Both types give the same result for zeta functions, and this gives sufficient information to prove 

the theorem. This is the most direct method. The second method uses an extension of the case 

of local fields, where we prove the general Riemann hypothesis conjecture, with related ideas 
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described by theorems developed by Weil, Grothendieck and Deligne. For the viewpoint 

developed here, we need not only these theorems extended to the transnatural and 

transalgebraic case, but also a discussion of those transcendental numbers independent of these 

two previous types. Thus we have three types of counting to do: for transnatural numbers, for 

transalgebraic numbers which are not transnatural, and then for transcendental numbers which 

are not of the other two types. For this we need a theory of transcendental independence 

extended to complex numbers, and a method of counting solutions for 3-branched spaces, in 

fact for 3-explosions. The latter is provided by an extension of the infinite superexponential 

methods of Gentzen. 

Having proved the generalised Riemann conjecture by these means, we are able to give a proof 

of the weak Goldbach conjecture, both by the direct method of Harald Helfgott proved in 2013, 

and using the our result on the Riemann hypothesis combined with the work of J-M. 

Deshouilles, G.W. Effinger, H.I.J. te Riele and D. Zinoviev in 1997. 
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On inviting the reader to mathematics 

What is mathematics? Possible worlds! These worlds have strict definitions. They have states 

which describe what is in these possible worlds, and specified transformations of these states, 

which describe how these possible worlds may change. 

It is my philosophy – a leap from some thinking about physics – that what is possible and 

consistent in mathematics matches what exists. Since mathematics is used to describe physics, 

consistent mathematics can describe the real world.  If a symbol represents 1 as 0, in some 

systems this is inconsistent. Consistency and the stability of solutions of equations represented 

by symbols are related. In this way of thinking, states that evolve stably are what now exists in 

the physical universe, and other states have physically self-annihilated in an inconsistency. 

Now I think of true, false, 1 and 0 as aspects of many valued logics with consistent algebras. 

These algebras describe consciousness. 

It is then an interesting programme to document what mathematical worlds are possible. Some 

of these worlds appear to be hallucinations – they have no implementation as far as we can see 

in the physical world. Others may have implementations which may only be used by future 

generations on the discovery of new physics, or otherwise have seemingly obvious practicality 

but may be generalised in ways which have no apparent immediate physical significance. 

The objective of this work is to introduce you the reader to these possible worlds and to ask 

you to become creatively involved in their construction and the analysis of their behaviour, so 

that giving new definitions and working out their consequences comes naturally to you. This 

programme is both abstract and potentially useful, to manipulate the physical world in ways 

which may be at the frontiers of human knowledge and experience, or may be everyday 

applications of direct and practical use. 

Mathematics develops outside the social group by the analysis of abstract systems whose 

meaning is derived from features of the world, and also within this group, as culture, history, 

revolution, extension and rewriting of its basis. In order to connect with its modern modes of 

reasoning, we need also to be aware of the human features which have led to the development 

of mathematics. 

The objective of creative mathematics is the production of ideas. These need caring support, 

and part of this objective is not just to replicate results, but to reconstruct mathematics from 

new principles, to have the resilience to deconstruct what has gone before if it is needed, and 

to extend results by an analysis of the core ideas of the subject as it currently stands. Thus it 

becomes feasible to develop generalised new methods to tackle outstanding problems.  

We need also to be aware that as a human endeavour we are not at a unique point in history 

where all aspects have been decided with certainty, and that human systems have triumphs and 

failings. We must have the courage of our convictions, and the sure analysis of our own and 

others thinking to develop this civilisation, and where necessary to have the resilience to upturn 

what has gone before, because even in mathematics we are not in utopia, and some things, 

promoted in the system from one generation to another, are wrong.  

Mathematics, once constructed, is about the truth. It may be that this truth has no respect for 

high-ranking authority. I feel it is good to be aware of this possibility when we conduct our 

research. 
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Processes of mathematical thinking 

An objective in writing this work has been to make progress and to explain to the reader. To 

make progress in mathematics I have relied on what is to hand, my own understanding or 

misunderstanding, and my intuition. 

My approach to understanding the subject is reliant on a feature of my personality, that I am 

not good at memorising a large number of facts, and therefore I must proceed by isolating a 

clear, distinct and small number of basic principles, and by applying rules of deduction to them 

which are recorded on some external medium, I can then reach finally a full set of results.  

To isolate these principles, I often find they cannot be derived from studying only the latest 

mathematics texts, but to make sense of these basic building blocks requires backtracking 

through the mathematical literature, until the principles on which a sector of mathematics is 

based is simple and its future form of development is clear. This history is often a long one, 

because each new mathematical generation feels compelled to revolutionise the ideas of its 

predecessors, and indeed eventually we find in Western culture the language of discourse is no 

longer English, but mainly German and also French, with many other languages included, and 

before this the language of scientific communication is Latin, or if we want to go further back 

than this, it is Greek. It is my assertion that to follow this history is extremely important in 

isolating key concepts and the processes inherent in current thinking. This history is not, as is 

often presented by historians with standard mathematical culture, a history of personalities. In 

essence, it is the history of the development of ideas. 

Once this subject is understood as a way of thinking, it is necessary to analyse it. Basic to the 

way I respond to this culture is the insight that I need. Perhaps some mathematicians have no 

intuition, just as some people are blind or deaf. Whatever the case, intuition is available to me, 

and I wish to apply it. Intuition may be thought of as an approach which grasps the whole of a 

subject at once, in an immediate understanding of all of its parts. It is my contention that in 

order to connect my intuition, which is what I feel about a result, to mathematical culture, I 

have to bring to the surface of my consciousness what is immediately grasped subconsciously, 

in order to analyse the contents of what I am thinking so that it is externally and explicitly 

expressed. Once this intuition has been transferred to written form, it is in a form in which it 

can be analysed. It is then possible to subject it to the mathematical culture which has arisen in 

describing logic, by devising methods of calculation in which ideas can be tested out. This 

initial stage is usually one in which the total system is not immediately expressed in an axiom 

system and regularised rules of deduction, but it allows further development in which these 

features are adopted. 

The result of this process is that intuitive ideas are collected together and are compared with 

current mathematical culture. By these methods I have seen an explosion of new ideas. This 

intensively creative process gives rise to significant mathematics. Riemann and Grothendieck 

advanced mathematics by 50 years, Euler by 100 and Archimedes by 200. This work pushes 

forward mathematics as if Archimedes had developed algebra, differentiation and integration 

and then intended to apply cohomology to the classification of topological groups. But had he 

been able to do so, to be understood he would have had to communicate in the notational 

encumbrances of the age in which he lived.  

We need to continue the process and explain this thinking, for two reasons. The first reason is 

that creative ideas are eventually subject to systemisation, so that they can be analysed using 

standard techniques adopted by the mathematical community. The second is so that jumps in 
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reasoning which the author thinks are justified are often not obvious enough to a reader new to 

this thinking. Thus I must be forced to describe all stages in my thinking. Proper mathematical 

argument is about explicit reasoning, so that all processes are described and a clear argument 

can be followed without dispute.  

The existence of disputes in mathematics is interesting. Thus, having introduced disputes in 

the first place by possibly controversial intuitive reasoning, an objective becomes to minimise 

or remove them by the introduction of explicit rules of deduction and symbolic manipulations 

together with a set of concrete meanings of these symbols which point to the world. This is the 

method I have chosen to develop new symbolic generalisations and create new mathematics. 

The most significant directions of my life have been determined by the labour I wanted to do. 

Had it been that I were sent to a pig farm in the cultural revolution in China, on adjustment to 

the collapse of my excessive ambition, I would probably have become an exemplary worker 

exceeding all quotas, without a thought to my personal promotion. But that would have been a 

waste. I have received an excellent education that I did not request, and did not find myself 

succeeding particularly well within it, but having adjusted to the culture of science, I became 

fascinated by its ideas and content. The wonderful mathematician Ramanujan did not succeed 

fully at university because he was too interested in his investigations of the subject to follow 

properly the course work, and he was not interested in social promotion through the system. In 

the pursuit of my obsessive interests in science, in my life this has befallen me too. 

Aesop’s fable of the tortoise and the hare ends with the tortoise winning the race. In research a 

certain level of intelligence is useful, but what is important is persistent curiosity. I am the 

tortoise. In my research I have exceeded in duration, but despite my wishes, not in collective 

effort, many Long Marches. The result of this work is no longer mine, it belongs to human 

culture, but social promotion through the system as a consequence of this is of no interest to 

me, except where it might promote general social welfare. 

At the start of my life my attitude was to ignore the rules and do the right thing. But now I have 

come to the conclusion that it is very useful to know what the rules are. They can be used to 

define acceptable and unacceptable behaviour, and to navigate through the social system to 

attain objectives. 

I started my scientific career with an innate conservatism towards scientific conventional 

wisdom and an aspiration to reach the summit of its understandings. In this respect I treated 

science as a religion. But at university I began to have doubts as to the correctness of some 

theories, although I did not have the means or resources to question them properly. 

In order to succeed well in the academic system, it is necessary to give the right answer to 

questions. Many mathematicians now teaching the subject freely admit that they crammed for 

examinations, and did not properly understand results, although they were concerned to 

memorise and replicate them. I believe some mathematicians writing on the subject today do 

so from the point of view that a proof has to be memorised, and if it is viewed abstractly it is 

not important to understand properly what is going on, provided the conclusion is reached 

rigorously. 

In pursuit of these interests, time and again in mathematics I am confronted with the fact that I 

do not understand a proof. When I inspect my own proofs and come to the same conclusion, 

the answer is easy. However much I am attached to an idea behind a proof, which sometimes 
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comes from experience of the material concerning it, if on reviewing what I am trying to say, 

the result is no nearer after all the effort, the theorem has to be jettisoned. 

There are standard proofs in mathematics which I have not understood after considerable effort 

at coming to grips with what they are saying. These proofs are sometimes technically erudite 

and sometimes extremely long. They can be surprising or counterintuitive. I do not believe the 

majority of mathematicians spend time on inspecting them, but rely on the peer review process 

to check their validity. Doubts are allayed if the result is well-established and a considerable 

confirmatory literature surrounds it. 

I have learnt that if, after considerable investigations, such a result is no clearer, that initial 

doubts are confirmed, and that the theorem is counterintuitive, a not unreasonable strategy is 

to assume that this does not arise from my own innate stupidity, but that the result is wrong. 

This at least allows an entry into other approaches to investigate what really might be the 

situation, since there is a logical mode of deduction which states that to prove a result, first 

assume the opposite and then prove a contradiction. Very often when I try this approach, the 

result is not a contradiction but an escape route, and if after much research an escape route 

cannot be closed off, persistent investigation has led to a refutation of current findings. 

To begin with, this astonished me, and an implication going beyond the proclaimed rigorous 

methods of mathematics to subjects of weaker intent is that much human reasoning of the 

current day is suspect. But now in new work I have taken this conclusion not as an end view in 

my investigations, but its starting point. 

As a word of encouragement, to make progress in mathematics it is best to assume that the 

truth can be arrived at by a process of successive corrections of theory. If I look at the work of 

Aristotle, whose deep thinking and wisdom ranged over history, logic, physics, biology and 

philosophy in a way that seems impossible because of intense specialisation today, we see 

someone who is concerned to find the truth when others of his generation were not. There is 

an erudite and difficult passage in his work where he deals with the motion of the moon. It is 

apparent 2200 years later that, not to put too fine a point on it, it is a load of codswallop. I feel 

that some intimidated students might have been examined on it, and heaven help them if they 

gave unapproved answers. It has been said that although Aristotle had many false ideas, that 

the history of much of scientific thought has consisted in correcting them. But it is not possible 

to make much progress when no prior thinking has been made of a topic. That progress has 

been made in mathematics has been contingent on the fact that those studying the subject had 

some wrong ideas but did not stay silent. 

I wish to end this section with a remark on learning and unlearning. In general, I have found 

no problems in presenting my ideas to undergraduates in their twenties who are studying for 

degrees in a science subject, particularly mathematics and physics. These ideas are absorbed 

and accepted without trauma. The reason that revolution has its meaning is that Copernicus’s 

book On the revolutions of the heavenly spheres could not be cognitively accepted by those 

who had been trained in a different outlook and had accepted it in their earlier years. I have 

found that those who have been taught the subject of mathematics in their youth, have reached 

maturity and maybe have been teaching this too, and have accepted this teaching cannot 

accommodate to the double burden of learning this new material which is at variance with what 

they have accepted, and at the same time unlearning what has been embedded in their way of 

thinking for very many years. A response from some younger people already trained is to find 

at every opportunity ways of undermining the ideas, always framed from the point of view of 

total acceptance of what they have been taught, and for such people who are older, of refusing 
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to engage in any way with these ideas, and even the refusal to read anything about them.  The 

task I face is a difficult one.  I do not know enough about psychology to understand the proper 

techniques which people can use to unlearn a subject. I know that when learning a piece of 

music, if you introduce an error into the performance of it, it becomes necessary to unlearn the 

error, and this is difficult, because the error becomes embedded in the way the mind operates 

in producing automatic responses. Have I then been able to escape from this situation myself? 

Perhaps I have an immediate readiness, frequently applied, of being able to change my 

conclusions in the face of evidence, together with the determination to find the facts and long 

term to maintain my stance or suspend my judgement when I believe the evidence is unproven. 

The only other way I can think that the mind uses to unlearn responses is to cry, but this is a 

speculation. I think this situation is about natural behaviour and needs to be viewed with 

compassion and understanding. In the long term, the logic of the viewpoint I am presenting 

will win out. That it may take a long time is unfortunate, but given the human condition this is 

understandable. 

 

The author’s responsibility  

This work is provided in the Mathematics section of the website www.jimhadams.org, where 

a brief synopsis of each chapter is provided. It is the sequel to Superexponential algebra 

[Ad15], displayed after Number, space and logic in the Mathematics section. Nevertheless, I 

have made Number, space and logic depend less on [Ad15] by taking some material from it. 

A central objective of this work is to encourage the graduate to produce mathematical ideas, 

and also to give assistance by providing a minimally fussy exposition of the research into 

number theory of the last fifty years. The creation of new mathematics can start from humble 

beginnings. Its process is too long delayed in the present academic system. We are seeking to 

foster insight so that the reader can pursue further investigations into the technical literature in 

a spirit of an understanding of its background. The reader will face a vast panorama of unified 

but simple new mathematics in this book. Its invention and discovery can be your work too. 

Exercises are not provided to work through the text, the reason being that these are no more 

needed for the development of creative skills than the memorisation of words and standard 

literary works is necessary for an active participation in becoming an author. My hope is that 

the diligent reader will provide what is necessary for constructive work, and that it is no longer 

necessary to give direction.  

Since I am aware that the first language of the reader may not be English, I have looked at the 

text and removed high literary style. Technical terms are I hope well explained, and examples 

are given. 

I am surrounded by people who definitely dislike and do not relate to abstraction, particularly 

mathematical abstraction. Some writers in our subject use abstract methods of reasoning to 

obscure simple ideas and clothe them in a system of thought which is remote. But abstraction 

can also reveal, and even attain ends which cannot be achieved by other means. Mathematics 

is best written in a style appropriate to its audience. For a graduate text I am confronted with 

the need and indulgent necessity, if given enough time, of writing in a rigorous mathematical 

style that will appeal to a mature mathematical audience. I have attempted, after much effort in 

attaining results, to rewrite this text in a clear classical style that reveals the subject as well as 

developing it.  

 

http://www.jimhadams.org/
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Except for marketing, our inclination is that a proof is only the final stage in the presentation 

of a mathematical idea. Proofs are necessary, but not sufficient.  

I would advise that the academic system can refer without proof to topics containing accepted 

well-known but false results, or demand the application of wrong reasoning to reach standard 

and erroneous conclusions. Errors may propagate through the examination system from one 

generation to another by selection of people who accommodate to them, with the authority 

structure too rigid to allow change. Much stress can be avoided on acknowledging this fact. 

Reflecting on my practical experience of the idea that major new understandings are never 

encountered in history without considerable resistance, I wish to issue a caution. Some such 

ideas have eventually been adopted by systems of authority not only because they represent the 

truth, but because their originator said so. I wish to repudiate such a notion. The authority is 

the truth. Period. Should it occur in the future that these ideas become the conventional wisdom, 

and if any one of them were in error, be aware that had I been there, my primary mathematical 

objective would be to deconstruct it. 

 

Faced with my own condition, I love to promote an attitude: getting it wrong is the first stage 

in getting it right. 

I thank Graham Ennis, who has sustained and inspired me with his encouragement. I have 

found John Baez’s website beautifully presented and a treasure-trove of links to interesting and 

accessible accounts of the research literature. Very useful to my mathematical development 

have been the books A first course in modular forms by Fred Diamond and Jerry Shurman 

[DS05], and Sphere packings, lattices and groups by John H. Conway and Neil Sloane [CN98]. 

An essential first task for a writer on the Riemann hypothesis is to investigate the work of Terry 

Tao and explore the insights he reveals. Research needs ideas, and also the people to pull them 

back to Earth. As well as the usual fulsome acknowledgement to Doly García in her criticism 

of this work, who cannot disagree with everything I say because sometimes I quite easily adopt 

her suggestions, I wish to express especially my gratitude to the stimulating interest of James 

Hamilton whose calculational checks amounted to an interactive collaboration on the chapter 

on polynomial wheel methods and comparison techniques. The contents of this work are my 

own, as is the responsibility for any errors. 

As this work continued to develop, the conclusions have surprised and delighted me. I hope 

Number, space and logic will delight and surprise you too.  

         Jim Hamilton Adams 

         Dublin 

          September 2017  
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Definitions of mathematical terms 

The following terms, symbols, ideas and definitions are used in the text. The arrangement is 

by ideas rather than alphabetic. This may be scanned as a more technical alternative to the 

details of the contents in the Foreword, or as a further introduction to the contents which follow 

in the eBook. The notation, for example (SA III), refers to Superexponential algebra chapter 

III, and (NSL I, IV) refers to this work, volume I, chapter IV. 

1. Sets S, T (SA III). 

 (the empty set). The set with no members. 

⊙ (the void set). The set satisfying a false condition. 

 (belongs to). If x is a member of a set S then x  S. 

⊂ (properly included in). If a set S is included in a set T and S does not equal T. 

⊆ (included in). Inclusion, when S = T is possible. 

CST (complement of S in T). Those x not belonging to S but that belong to T, and S ⊂ T. 

⋃ (union of sets). If x belongs to S or x belongs to T then x belongs to S ⋃ T. 

⋂ (intersection of sets). If x  S and x  T then x  S ⋂ T. 

2. ℕ is the set {1, 2, 3 ...} of positive whole numbers, also called natural numbers. If 

this set contains the element 0, we denote it in this eBook by ℕ∪0. If we wish to emphasise that 

it does not contain zero, we use ℕ0. 

ℤ (from the German Zahl for number) is the set {..., -3, -2, -1, 0, 1, 2, ...} of negative, zero or 

positive integers.  

ℚ is the set of rational numbers m/n, where m ∊ ℤ and n ∊ ℕ, for example ½.  

𝔸 is used in this eBook as the set of algebraic numbers, sums and differences of numbers 

of the form pq, where p, q ∊ ℚ, but p and q together are not both zero, for example 1 + 2√−𝟏
𝟓

𝟑
. 

𝕄t is the set of transnatural numbers for index t, satisfying the rules for ℕ. 𝕄1 = ℕ, with 

proper injections 𝕄t → 𝕄t+1, 𝕄t → 𝕄′ and surjections 𝕄′ → 𝕄t+1 for distinct 𝕄′.  

ℤt Transintegers are positive, zero or negative transnatural numbers. 

ℚt Transrational numbers are of the form m/n where m ∊ ℤt and n ∊ 𝕄t. 

𝔸t Transalgebraic numbers are sums and differences of the form pq, where p, q ∊ ℚt, or 

alternatively formed in a similar way from superexponential operations. 

ℝ Real numbers have no imaginary component but are possibly not transalgebraic. 

p-adic number. Arithmetic with a nonstandard idea of closeness between numbers. 
 

3. Peano axioms. The rules for natural number arithmetic. 

UCH. The false uncountable continuum hypothesis that ℝ is bijective to 2ℕ. 

ZFC. Zermelo-Fraenkel standard set theory with the axiom of choice. 

mZFC. Modified ZFC, allowing a set satisfying a false condition (but not invalid choice). 

Propositional calculus. The logic of truth tables for true and false. 

Predicate calculus. Propositional calculus allowing the statement ‘there exists’. 

Untwisted logic. Logic for a set embedded in an oriented manifold. 

Twisted logic. Logic for a set embedded in a twisted manifold. 
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4. Congruence arithmetic (mod n). Finite or ‘clock’ arithmetic where transnatural 

numbers come back to themselves, so its set is {0, 1, ... (n – 1)} and n = 0. 

Prime number. A transnatural number which only when divided by 1 and itself gives a 

transnatural number. Example: 7. 

Totient ((s)). For a transnatural number s as a product of primes p, q, ... r to powers j, k, ... 

m, if s = (pj)(qk)...(rm) then φ(s) = s [(1 – 
1

p
) (1 – 

1

q
) ⋯ (1 – 

1

r
)]. Example: (20) = 8. 

5. Abelian. Occurs for a set with a general operation + (not necessarily addition as usually 

understood) when a + b = b + a always.  
Commutative. Abelian, but generally written for  rather than +. 

Associative. Satisfying a + (b + c) = (a + b) + c, or a(bc) = (ab)c, etc. 

6. Eudoxus numbers, 𝕌. Any number which multiplied by some integer can have a size 

within a range of finite positive natural numbers. 

Complex numbers, ℂ. Numbers of the form a + bi, where a, b  𝕌 and i = -1. 

Gaussian integers. Complex numbers where a and b above are integers. 

𝔽 is a field (SA III). It contains axioms (rules) for addition and multiplication. Examples could 

be the  Eudoxus numbers 𝕌 and complex numbers ℂ. 

𝕐 is a zero algebra (SA III). This is similar to a field except for the existence of multizeros. 

Exponential algebra, (SA XII and XIII). Contains axioms for exponentiation. 

𝔻w exponential algebra, (SA XIII). A nonstandard exponential algebra. 

Suoperator (chapter III and SA XV). An operation, of which the first three are addition, 

multiplication and exponentiation, where the nth is found by repeating the (n – 1)th.  

Superstructure. Contains axioms connecting suoperator nth operations for various n. 

7. Standard protocol. (chapter I). The ordinal infinity 𝝮ℕ =  ∑ 1all ℕ . This is not a natural 

number, and is treated as being irreducible. 

Ladder number. A suoperator expression in 𝝮ℕ, with Eudoxus coefficients.   

Strict transfer principle. The axioms for variables in a suoperator algebra also hold for the 

variable 𝝮ℕ. 

Capital Ξ function. Satisfies 1Ξ(a) = a.  

8. Implies. (exercise, SA XI). For statements A and B, A implies B is only false when A is 

true and B is false. 

Sufficient. A is sufficient for B means A implies B. 

Necessary. A is necessary for B means A is implied by B (the same as B implies A). 

9. Function (SA III). A set of pairs, {x, f(x)}, all x of which have a value f(x). 

Injection. A mapping from all the sets {a, b} to {f(a), f(b)}, where f(a)  f(b) if a  b. 

Surjection. A mapping where every f(x) in the set {f(x)} has a value from an x. 

Bijection. A mapping which is simultaneously injective and surjective. 

10. Magma, M (SA III). A set with one binary operation, with no other properties specified. 

Polymagma (SA XV). Maps a number of copies of a set to itself. 
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Group, G (SA III). This satisfies the multiplicative axioms for a field, except multiplication 

may be noncommutative: ab  ba. 

Subgroup. A set of elements in a group which satisfies within itself all the properties of the 

containing group. 

Order of a group. The number of elements (or members) in a group. 

Homomorphism of groups is a surjective map h: G  G′ of groups with h(ab) = h(a)h(b).  

Isomorphism of groups. A bijective homomorphism. 

Automorphism of a group is an isomorphism of a group to itself. 

Inner automorphism of a group is an automorphism of the form x  a-1xa. 

Outer automorphism of a group. An automorphism which is not inner. 

Normal subgroup is invariant under all inner automorphisms of the containing group G. 

Simple group has no normal subgroups other than itself and 1. 

11. Ring, A. Satisfies the additive and multiplicative axioms of a field, except there is no 

general division and multiplication may be noncommutative. Example: matrices. 

Unital ring. A ring with a multiplicative identity, 1. We assume rings are unital. 

Automorphism of a ring. (SA X). A bijective map of a ring A, H: A  A, where H(ab) = 

H(a)H(b) and H(a + b) = H(a) + H(b). 

12. Vector, v (in bold). A matrix as one row (a row vector), or as one column (a column 

vector). Example: the row vector (x, y, z). 

Vector space. Contains vectors with magnitude and direction, which can be added together 

and multiplied by scalars in a field. 

Base point. The origin for a vector space. 

Module. A module over a ring is a generalisation of a vector space over a field, being an 

additive abelian group like a vector space, where the scalars are the elements of a ring. 

Scalar product of two vectors. The matrix product of multiplying each element of a row 

vector in turn with the corresponding elements of a column vector. Example: x2 + y2 + z2. 

Eigenvector. A vector x satisfying for matrix B, Bx = x.  

Eigenvalue. A value  for the eigenvector x above. Example:  is a complex root value. 

 

13. Matrix (plural matrices). An array of numbers B = bjk, where the element bij exists in 

the ith row and jth column. (SA I and II). 

Symmetric matrix. U = ujk = ukj. 

Antisymmetric matrix. V = vjk = -vkj. 

Matrix transpose. If W = wjk , then the transpose WT = wkj. 

Unit diagonal matrix. Denoted by I = bjk, where bjk = 1 when j = k, otherwise bjk = 0. 

Trace of a matrix. The sum of all (main) diagonal entries bjk, where j = k. 

Determinant (or hypervolume) of a matrix, (det B). (SA I and II). 

Singular matrix, D. Satisfies det D = 0. 

Units, K*. The invertible elements of a ring, for example giving det ≠ 0. 

Box. An n-dimensional array of numbers. 

Box scalar product of two boxes. A scalar value obtained from boxes using scalar products 

of vectors and determinants of matrices. 
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14. Intricate number. A representation of 2  2 matrices, that is, with two rows and two 

columns, given by a1 + bi + c + d. (SA I). 

Intricate basis element. One of the vectors 1, i,  or  above. 

Real basis element. The number 1 in its intricate representation. 

Imaginary basis element. The number i in its intricate representation. 

Actual basis element. The number  in its intricate representation. 

Phantom basis element. The number  in its intricate representation. 

Intricate conjugate. The number a1 – bi – c – d. 

J. J = bi + c + d in which J2 = 0 or 1. 

JAF. A changed basis for i,  and . 

15. Hyperintricate number. A representation of 2n  2n matrices. (SA II).  

Layer. For example, a hyperintricate number with a component in 3 layers is AB,C where A, B 

and C are intricate numbers, possibly intricate basis elements. 

n-hyperintricate number. A hyperintricate number representable by sums of components 

in n layers. Sometimes denoted by Яn. 

n-hyperintricate conjugate, Я*n. Satisfies Я*nЯn = det Яn. 

J-abelian hyperintricate number. A number giving the example AB + ... + DE, where A = 

p1 + qJ, B = p′1 + q′J′, ..., D = t1 + uJ, E = t′1 + u′J′. Two such hyperintricate numbers with 

identical J and J′ commute. 

 

16. Division algebra. (SA III and V). A division ring where multiplication might be 

nonassociative. Multiplying two elements of such an algebra cannot give zero unless one of 

them is zero. 

Zargon algebra. A division algebra except possibly for zero scalar components. 

Quaternions. (SA III and V). A type of associative division algebra. 

Octonions, 𝕆. (SA V). A nonassociative division algebra. 

n-vulcannions. General nonassociative division algebras of dimension n = 6k + 2. 

Vulcan number, v. The dimension of a vulcannion minus one – the number of its space 

components. 
T-junction. A diagram used to classify vulcannions. 

n-novanions. (SA V). An n dimensional nonassociative division algebra, but not when both 

the real parts in a multiplication are zero. 

Zargonion. A combination of algebras obtained from vulcannions and novanions. 

Tribble. A zargonion except space components have square 0. It may not have a divisor. 

Tharlonion. A zargonion except space components have square 1. It may not have a divisor. 

17. Norm. Applied to complex numbers a + bi, the norm is (a2 + b2). For intricate numbers 

a1 + bi + c + d the norm squared is a2 + b2 – c2 – d2. Applied to a n  n matrix B, the norm 

is the positive nth root of det B. Applied to n-zargonions a1 + bi + c + d + b′i′ + c′′ + d′′ 
+ ..., the norm is (a2 + b2 + c2 + d2 + b′2 + c′2 + d′2 + ...). 

18. Additive format of a polynomial equation. The form axn + bxn-1 + ... + d = 0. (SA 

VII and VIII). 
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Monic polynomial. Example in the case of a polynomial equation: when a above = 1. 

Fundamental theorem of algebra. The complex polynomial in additive format given by 

axn + bxn-1 + ... + d always has some values which are zero. 

Multiplicative format of a polynomial equation. The form (x – p)(x – q) ... (x – t) = 0. 

Zero of a polynomial. A value of a polynomial f(x) = axn + bxn-1 + ... + d so that f(x) = 0. 

Root of a polynomial equation. The roots of a polynomial equation f(x) = 0 are the values 

of x satisfying this. 

Equaliser of two polynomials. The intersection of their values. 

Degree of a polynomial. The value of n for f(x). 

Duplicate root. A root of the equation (x + a)2 = 0. 

Antiduplicate root. A root of the equation (x + a)(x – a) = 0. 

Independent roots. Occur when no known dependency relation is used in the solution of a 

polynomial equation. 

Dependent roots. Occur when a known dependency relation is used in the solution of a 

polynomial equation. 

Multivariate polynomial. A polynomial in a number of variables.   

Variety. A polynomial equation in a number of variables. Example: 3x2y + xyz + 4x2z2 = 0. 

19. Equivalence relation  in a set S. Satisfies a  a (reflexive), if a  b then b  a 

(symmetric) and if a  b and b  c then a  c (transitive), for a, b, c  S. 

Equivalence class. A partition of a set where an equivalence relation between elements 

defines membership of the partition. 

Partial order < of a set S. Satisfies a < a, if a < b and b < a then a = b (antisymmetric) and 

if a < b and b < c then a < c, for a, b, c  S. 

Poset. A partially ordered set. 

Total order < of a set S is a partial order existing for all a, b, c  S. 

Well-ordering < of a set S. A total order where every nonempty subset has a least element. 

20. Left (or right) coset of a subgroup S of G is the set of elements aS (or respectively Sa), 

with s  S and a  G.  

Quotient group G/S of G mod S. The family of left cosets of the group G with subgroup 

S, sG, s  S. 

21. Ideal, C. (SA III and XI). A subset of a ring, A, with the rule that {c, d}  C and a  A 

implies (c – d)  C and both ac and ca  C. 

Principal ideal, (a). The ideal generated by one element, a, of the ring A. For every r  A, 

(a) is ra. Example: for a  0 belonging to the integers ℤ, (3a) ⊂ (a) ⊂ ℤ. 

Prime ideal, P. If a and b are two elements of A such that their product ab is an element of 

P, then a or b is in P, and P is not equal to the whole ring A. Example: integers containing all 

the multiples of a given prime number, together with zero. Example: the zero ideal (0). 

Maximal ideal, M. In any ring A, this is an ideal M contained in just two ideals of A, M 

itself and the entire ring A. Every maximal ideal is prime. Nonexistence: the zero ideal (0) is 

not a maximal ideal of ℤ because (0) ⊂ (2) ⊂ ℤ, nor is the ideal (6), since (6) ⊂ (2) ⊂ ℤ. 

Nilradical, N(A). The intersection of all prime ideals of a ring. 
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22. Unfinished set. Example: the interval a < x < b with the end points a and b removed. 

Finished set. Example: the interval a < x < b with the end points a and b present. 

Topology. A theory of space using finished and unfinished sets. 

23. Exact sequence. (SA III). 

Homology. A theory of holes. The dimension of the nth homology is the number of holes in 

a space for dimension n. 

24. Euler-Poincaré characteristic. In 3-space the number of vertex points – edges + faces 

of a space divided into n-dimensional polygons. 

Möbius strip. A reconnected rectangle with a twist. 

Handle. Obtained on a surface by cutting out two holes and gluing in a cylinder. 

Crosscap. Obtained on a surface by cutting out a hole and gluing in a Möbius strip. 

 

25. Graph. A set of vertices and arrows (or edges) with a mapping from origin to terminus, 

and provided with a reverse mapping changing orientation. 

Path. A finite sequence of edges with the terminus of each edge connecting to an origin of the 

next edge. 

Circuit. A path with its end vertices connected together (start origin = end terminus vertex). 

A graph is connected if all vertices are contained in a path. 

Tree. A connected nonempty graph without circuits. 

Node. An origin or terminus in a tree. 

Parent node. An origin in a tree. 

Child node. A terminus in a tree. 

Root of a tree. A child with no parent. 

Leaf of a tree. A parent with no child. 

26. Homotopy. A theory of paths through a topological space. 

Winding number. The number of times a loop winds round a point.  

27. n-branched space. A space where the removal of a point disconnects the space into n 

pieces. 

Explosion. An n-branched space with an infinite or transinfinite number of points. 

Supernorm. An evaluation of the magnitude of an explosion. 

Branch number. An evaluation of the number of branches in an explosion. 

28. Deformation retract. The set of all occurrences of a vector transported along another 

vector. 

Branched vector. A directed tree, with arrows proceeding from its root and splitting to its 

branches. 

Branched deformation retract. A branched vector transported and split into copies along 

another branched vector. 

Amalgam. A branched retract with some of its nodes connected. 
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29. Morphism. An associative mapping with identity in category theory. 

Category. A description of mathematics in terms of morphisms. 

Object. The element where a morphism comes from or goes to. 

Arrow. A morphism considered as a directed mapping between objects. 

Hom-set. The description of categories as a collection of arrows. 

Functor (covariant). Describes states and transformations as if they were on the same 

footing. If f and g are morphisms, and T is a functor, it is covariant if T(f_g) = T(f)_T(g). 

Contravariant functor. A functor reversing the order of composition: T(f_g) = T(g)_T(f). 

Morphism of functors (natural transformation). An example is the determinant, as a 

transformation from commutative rings to groups. 

Topos. A categorical description of a set. 

Adjoint functor. A specific type of interrelationship between functors, of general use in 

mathematics. 
Kan extension. The combinations of mappings between two sets are described in terms of 

hom-sets by an exponential, and this can be differentiated or integrated. Kan extensions 

implement this idea. 

30. Explanation. A theory or theorem using matrices or other combinatorial means. 

Charade. The image of an explanation in homological algebra. 

Deconstruction. The mathematical refutation of a generally accepted result. 

  
 

 


