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G. Eisenstein, 2.  

Applications of algebra to transcendental arithmetic. 

___________________________ 

Given two algebraic equations whatsoever, we can eliminate the unknown quantity x in two 

different ways, either by putting in place of the x in the second its value taken from the first, 

or putting in place of the x in the first its value taken from the second, without changing 

essentially the result of the elimination. We will see in what follows that the reciprocity laws 

for quadratic, cubic and biquadratic residues, (theorems as celebrated by the difficulty of their 

proof as by the assiduity with which the greatest mathematicians have occupied their time on 

them), are nothing other than the arithmetical interpretation of a simple algebraic fact about 

which we are going to speak. Thus for example, taking sin v = x, if we designate two odd 

prime numbers by p and q (real), and by x =  or respectively x =  the sets of roots of the 

two equations sin pv/sin v = 0, sin qv/sin v = 0, we will see that under the moduli q, p that the 

residues of p
½(q – 1)

 and q
½(p – 1)

 depend resp. on two expressions (2
 – 2

) and (2
 – 2

), 

where the multiplication is carried through all values of  and ; there exist analogous results 

for cubic and biquadratic residues. The method which leads us to these results is very simple, 

it treats the comparison of the two numbers in a perfectly symmetrical manner, and in these 

demonstations conserves the analogy which exists between theorems covering residues for 

different powers. As for the rest, we are able to consider the investigation of the first elements 

of a new doctrine where we transfer arithmetical questions to algebra and analysis, in such a 

manner that all difficulties are reduced to those offering us calculation. I start this material by 

beginning with quadratic residues. 

§1. 

Quadratic residues 

Given an odd prime number (real and positive) p, we can always conceive of a system of 

residues for the modulus p, 
[1]

 distributed in two groups such that the terms composing the 

second group are opposite in sign to those of the first; we will represent general terms of 

these two groups by r and -r; for example we can take for r the numbers 1, 2, 3, ... ½(p – 1) 

and for -r the numbers -1, -2, -3, ... -½(p – 1). Granted that, if we multiply all the r by any 

whole number q not divisible by p, the residues of the product qr will find themselves in a 

part occupied by the r and a part occupied by the -r. In consequence, according to these two 

cases we are distinguishing,  

 qr  r,  or  qr  -r (mod p),  

of the sort that r is always to be found amongst the r, we will have respectively 

 sin qr/p = sin r/p, or sin qr/p = -sin r/p, 

where we have made the abridgement  = 2. We therefore have in every case  

 qr  r .(sin qr/p)/(sin r/p) (mod p). 

Substituting in this expression for r all of its ½(p – 1) values, and multiplying together all the 

expressions which that gives, we obtain, on observing again that all the r coincide with all 

the r: 

 q
½(p – 1)

r  r.(sin qr/p)/(sin r/p)  r.{(sin qr/p)/(sin r/p)} (mod p), 
________________________ 

[1] on exclusion from this of terms of such a system which is a multiple of the modulus, which we 
always tacitly suppose. 
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thus, if we divide the two members of this congruence by r, which is permissible since r 

is not divisible by the modulus p, we will have 

(1)  q
½(p – 1)

  {(sin qr/p)/(sin r/p)} (mod p). 

This formula expresses the quadratic character of q with respect to p. Suppose now that q is 

also an odd prime number, then the quadratic character of p with respect to q will be 

expressed in similar manner by the formula 

(2) p
½(q – 1)

  {(sin p/q)/(sin /q)} (mod q), 

(the multiplication relates to ) which is the general expression of a set of numbers which 

together with -q consists of a system of residues for the modulus q. 

We are concerned therefore to make a comparison between the quadratic characters on the 

right of formulas (1) and (2). If we make sin v = x, the quantities 

 sin pv/sin v = P,  sin qv/sin v = Q 

are whole number functions in x of degrees respectively p – 1 and q – 1; moreover, putting 

sin r/p = , sin /q = , the roots of the equation P = 0 are designated by  and those of 

the equation Q = 0 by . That being so, the second member of formula (1) will be equivalent 

to the product of the values which take the expression Q, putting there for x all the values of 

, and likewise we obtain the second member of formula (2) putting in P for x all the  

values, making the product of the expressions which result. We then have 

 P = (-1)
½(p – 1)

(x
2
 – 2

)2
p – 1

,  Q = (-1)
½(q – 1)

(x
2
 – 2

)2
q – 1

 , 

thus these become 

 (3)
  

q
½(p – 1)

  C(2
 – 2

) (mod p),  

 (4)
  

p
½(q – 1)

  C(2
 – 2

) (mod p), 

where each value of  has to be combined with each value of . C is a constant found to be 

 C = (-1)
½(p – 1) ½(q – 1)

2
½(p – 1)(q – 1)

. 

Now the number of the  is ½(p – 1), and the number of the  is ½(q – 1), consequently the 

number of combinations of  and  will be ½(p – 1) ½(q – 1), where finally we take 

 (2
 – 2

) = (-1)
½(p – 1) ½(q – 1)

(2
 – 2

). 

This last equation compared with (3) and (4) gives immediately the law of quadratic residues. 

If we wish to evaluate the constant C, we need to use tangents instead of sines. 

§2. 

Biquadratic residues 

Biquadratic residues can be treated in an absolutely similar manner. Elliptic functions, or 

rather that particular space of elliptic functions which is derived from the leminiscate, play 

here the role of sines; we must first say a few words about these functions. 

We will designate by x = sin am v the function of v which satisfies the equation 

 dx = dv.(1 – x
2
), 

and  which  at  the  same  time  vanishes  with  v.  This  function  is  periodic  in  two  ways,  indeed  

putting  = 4   
 

 
/(1 – x

2
), we have sin am(v + k) = sin am v; k is a complex integer of the 

form a + bi, where a and b are real whole numbers. Another property of this function is 

expressed by 

 sin am iv = i sin am v; 

a very important property for our investigations is derived immediately from the differential 

equation, on observing that this  does  not  vary  under  the  simultaneous  transformation  of  x  to  
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ix and v to iv. We know elsewhere from research by Abel and Jacobi [2] that sin am (u + v) can 

be expressed algebraically by sin am u and sin am v, and above all, when taking for m an odd 

complex integer, we can reduce sin am mv to a rational function of sin am v. 

Let m = a + bi be an odd prime complex number; let the norm be N(m), that is to say the real 

and positive integer a
2
 + b

2
, = p = N(m); we can always partition a system of residues for the 

modulus m, which contains p – 1 terms, after excluding that which is divisible by the 

modulus, in four groups, such that the terms of the 2
nd

, 3
rd

 and 4
th

 groups are inferred from 

those of the first on multiplying it by i, -1 and by i respectively. Then multiplying all the r by 

any complex integer n not divisible by m, the residues of the products nr will be found 

distributed between the r, the ir, -r or -ir. According to these four cases we have described, 

let 

 nr  r,    ir,  -r or  -ir (mod m), 

where r is situated amongst the r. Having defined that, we will have according to the four 

cases 

{(sin am nr/m)/(sin am r/m)} = 1, i, -1 or -i; 

we will have in every case 

 nr  r{(sin am nr/m)/(sin am r/m)} (mod m), 

where, on observing that all the r coincide with all the r, and that r is not divisible by m, 

we obtain 

 (1)  n
¼(p – 1)

  {(sin am nr/m)/(sin am r/m)} (mod m), 

the sign  accompanying every r. Supposing that n, also m, is an odd prime complex number 

and that the system of residues for the modulus n is also distributed between for groups such 

that their general terms are represented by , i, -, -i, we will have in an analogous way

 (2) m
¼(p – 1)

  {(sin am m/n)/(sin am /n)} (mod n), 

where q is the norm of n and the multiplication traverses all values of . 

We have already remarked that we can evaluate the expression sin am v and consequently 

also sin am mv/sin am v by a rational function sin am mv. There exists between the numerator 

and the denominator of this rational function, which are of degree p – 1, a remarkable relation 

which depends on the residue of m with respect to the modulus 2 + 2i. This relation reduces 

to its most simple form if we suppose m prime, that is to say  1 (mod 2 + 2i); in this case the 

value of (sin am mv)/(sin am v) takes the form (x)/x
p – 1

(1/x), x is sin am v and (x) an entire 

function of x of degree p – 1. In effect, suppose the fraction (x)/(x) is reduced to its 

simplest expression and the coefficient of the highest power in the numerator is equal to 

unity, which is permissible, if we manufacture from 

 (sin am mv)/(sin am v) = (x)/(x), 

the expression y = x (x)/(x) which vanishes with x, it will satisfy the differential equation 

dy/(1 – y
4
) = mdx/(1 – x

4
), from which we see all the exponents of different powers in (x) 

and in (x) are multiples of four; letting y = 1/, x = 1/i
, where  designates an 

indeterminate integer, the differential equation which we are going to write will change under 

this substitution as i

d/(4

 – 1) = md/(4
 – 1) and we are able to dispose of  in a way so 

that d/(1 – 4
) = md/(1 – 4

). This last equation will thus be satisfied by the integral  = 

i
(1/)/(1/), and as it is easy to see this, reduced to the form i

p – 1
(1/)/p – 1

(1/), 

must coincide with the integral y which satisfies the same differential equation, so we will be  
_________________________ 

[2] See for example the 2
nd

, 3
rd
 and 4

th
 volume of this journal. It appears that Mr Gauss has already at 

the end of the last century been in possession of the principal theorems on these functions; in effect in 

the Disquisitiones Arithmeticae he had promised a work dealing with these functions, but it appears 

that the circumstances of other work had prevented him from executing his project. 
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able, using a complex unit, to equalise separately the numerators and denominators for the 

two integrals concerned. This gives (x) = i

x

p – 1
/(1/x);  is a real integer. To determine the 

value of it, we find x = sin am ¼ = 1 and sin am ¼(m) = (1)/i

(1) = i 

-
, or for a prime 

value of m we have sin am ¼(m) = +1 (Volume II, page 111 of this journal) and it follows i

 

= 1, thus we have definitively (sin am mv)/(sin am v) = (x)/x
p – 1

/(1/x), for a prime value of 

m; this is what we needed to prove. 

If therefore we suppose that both m and n are  1 (mod 2 + 2i), and that we make 

 (sin am mv)/(sin am v) = (x)/x
p – 1

/(1/x), (sin am nv)/(sin am v) = f(x)/x
q – 1

/f(1/x), 

 sin am r/m = ,            sin am /n = , 

the roots of the equation (x) = 0 will be given by , i, and those of the equation f(x) = 0 

by , i, such that we can write 

 (sin am mv)/(sin am v) =
 
(x

4
 – 4

)/(1 – 4
x

4
), 

 (sin am nv)/(sin am v) =
 
(x

4
 – 4

)/(1 – 4
x

4
). 

From this and the two formulas (1) and (2) we extract 

 (3) n
¼(p – 1)

   (4
 – 4

)/(1 – 44
) (mod m), 

(4) m
¼(p – 1)

   (4
 – 4

)/(1 – 44
) (mod n), 

where it is necessary to combine each value of  with each value of . The number of these 

combinations being ¼(p – 1) ¼(q – 1), only inspection of formulas (3) and (4) is sufficient to 

conclude immediately the fundamental theorem on biquadratic residues. 

§3. 

Remarks 

To demonstrate the law of reciprocity relative to cubic residues, we do none other than 

replace the differential equation dx = dv(1 – x
4
) by dx = dv(1 – x

3
) or dx = dv[x(1 – x

3
)]; 

and instead of taking complex numbers of the form a + bi, it is only necessary to consider 

numbers composed of the roots of the equation 
2
 +  + 1 = 0; for the rest the direction of the 

demonstration is perfectly analogous for that we have followed for biquadratic residues. For 

that reason, and since we believe we have indicated clearly the spirit of our method, we will 

leave to another occasion the more detailed examination of researches elsewhere which we 

have endeavoured to make on these applications of algebra and arithmetic. We will treat at 

that time especially residues of higher powers, of which the fundamental theorems depend on 

the elimination of many variables for three up to a large number of algebraic equations. 

It is possible that one does not approve of the usage of trigonometric and elliptic functions in 

arithmetical reasoning; but we can make the observation that these functions do not enter 

except in a way of saying that is symbolic, and that it is possible to banish them completely 

without destroying the substance and basis of demonstrations. To see this relative to quadratic 

residues, take the congruence q
½(p – 1)

  C(2
 – 2

) (mod p), where all the letters have the 

same signification as in § 1. For this formula giving the quadratic character of q with respect 

to p, everything depends essentially on the sign of the second member. If then we replace the 

 and  by other quantities  and , subject to the sole condition that
  2

 – 2 always has 

the same sign as 2
 – 2

, the product C( 2 – 2) always describes by its sign the character 

of q. We are therefore led to this remarkable theorem: 

“If we construct any closed curve whatever, but symmetric with respect to two 

perpendicular axes, of a sort with four congruent parts, for which the values increase in the 

first quadrant: where we then divide the circumference of this curve in p and in q equal parts 

and where we designate by  and  respectively the positive values which correspond to 
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these two divisions, I say that q will or will not be a quadratic residue of p according to the 

product (-1)
½(p – 1) ½(q – 1)

(2
 – 2

) = (2
 – 2

) for which each value of  on combination 

with each value of , will have the sign plus or the sign minus.”  

This theorem, of which the law of reciprocity is an immediate consequence, can be 

demonstrated in a purely arithmetical manner. There exists something analogous but more 

complicated for cubic and biquadratic residues, and we can say for the proof of the associated 

laws of reciprocity that we have no need of the formula for multiplication of elliptic 

functions. However it does not appear always preferable to avoid analytic functions in 

arithmetical research, especially when we see a posteriori that they do not enter essentially in 

the proofs and that they serve solely to fix ideas and abridge conclusions. 

Berlin 13 February 1845. 

 

________________________________ 

This is a translation from the French [Ei1845] in Eisenstein’s Mathematiche Abhandlungen. 

There is a commentary on this work by Kronecker, both in German [Kr1876] and French 

[Kr1880]. 
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