
13.1 
 

 

CHAPTER XIII 

Probability sheaves 

 

13.1. Introduction.  

We generalise the probability between two events related by a binary logical operation, to 

any numbers, which can include different values than 1 for certain and 0 for impossible. To 

do this I use multilinear interpolation of values of truth tables.  
 

We extend these considerations to truth tables in propositional logic with results of operations 

which are themselves probabilities. The case for multilinear probabilities is subsumed under 

the case for polynomials in more than one variable. 
 

We introduce as further developments hyperintricate probabilities, exponentiated probability 

and probability sheaves. In section 7 we provide a previously unpublished paper of 1980 on 

probability logics. 
 

13.2. Multilinear probabilities from truth tables.  

Instead of considering 1 as the number for an absolutely certain event, choose the real 

number  to represent this, and instead of 0 for an impossible event, choose the real number 

,   . 

 

If there are n occurrences of an event, where the complete set of possible occurrences is N, 

this gives an allocation of a probability measure 

 (n/N) + [1 – (n/N)] 

for the event. As linear values these occupy a unique straight line through  and .  

 

A model for the bijection between set theory and logic is to introduce an event x A, where 

A is a set. 

Suppose the probability P(A) of an event A is a + (1 – a). For the unary NOT operation 

 

 

 

 

 

 
 

we consider the linear probability P(NOT A) of NOT A, given by (1 – a) + a, pictured in the 

diagrams with a = 1 chosen at the end of the vectors. 

                a              The axes on the left are shown below.  

          

         probability of NOT P 

               

                 (1 – a)  probability P     
 

                 a                a 

NOT  A A 

  

  
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Suppose the probability of an event C is c + (1 – c). Rather than have probabilities defined 

under a multilinear relation, we now extend this to multipolynomials, that is, polynomials in 

more than one variable. For the following truth tables for the logical operations & and OR, 

we can determine the linear probability of C & D and C OR D, where D is an event with a 

probability of d + (1 – d). The axiomatic basis of our calculations will be based on 

interpolating multilinear relations like r =  + c + d + cd from their values given in truth 

tables. 

 

 

 

 

 

 

 

 
 

 

For the probability of C & D, if we designate this as P(C & D), we have 

 P(C & D) = cd + (1 – cd).        (1) 

 

The linear probability of C OR D can be obtained from C & D using the relations 

 C OR D = NOT(NOT C & NOT D) 

and 

P(NOT C) = (1 – c) + c, 

so the probability is 

 P(C OR D) = (c + d – cd) + (1 – c – d + cd).     (2) 

 

The logic of exclusive OR (XOR) is given by the relation 

  C  XOR  D = (C OR D) & NOT(C & D). 

The linear interpolation from the truth table turns out to be 

 P(C XOR  D) = r + (1 – r) = (c + d – 2cd) + (1 – c – d + 2cd). 

 

To show how I obtained this, let us look at the truth table for C XOR D: 

 

 

 

 

 

 

 

 

 

 

So to interpolate, considering r =  + c + d + cd, we have the following equations: 

0 =  +  +  +  

C  OR  D C D 

   

   

   

   

 

C  &  D C D 

   

   

   

   

 

C  XOR  D C D 

   

   

   

   
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 1 =  +  

 1 =         +  

 0 = . 

 

The relation if and only if, given by the symbol , is defined as 

   is equivalent to NOT XOR. 

 

The logical relations  (implies) and  (is implied by) are defined by 

  is equivalent to (NOT C) OR D 

 is equivalent to C OR (NOT D), 

so for example 

 P(C  D) = (1 – c  + cd) +  (c – cd). 

 

However, although 

C  D = (C  D) & (C  D), 

(C  D) and (C  D) are not independent events, so a substitution does not give a linear 

probability. Nevertheless, we can construct a relation between ,  and  probabilities: 

P(C  D) = P(C  D) + P(C  D) – . 

 

To complete the logical set of relationships, define the seemingly trivial relations 

  (C  D) “C gives D” 

as resulting in D and 

(C  D) “C is given by D” 

as resulting in C. There is also the relation which gives identically  for all values. 

Together with the NOT relation, which interchanges  and , this gives a complete set of 16 

binary logical relations between C and D, and the corresponding linear probabilities. 

As a further extension, consider an operation * that acts on C and D probabilistically. We can 

determine the formula for C * D from the truth table 

 

 

 

 

 

 

 

 

 

 

where m is the probability em + (1 – em), with m = 1, … 4, so 

  P(C * D) = X + (1 – X) 

where 

  X = e4 + (e2 –  e4)c + (e3 –  e4)d + (e1 –  e2 –  e3 + e4)cd. 

 

The * operation can be represented as a linear sum, with non-negative coefficients together 

summing to 1, of the 16 possible binary logical operations. 

 

C  *  D C D 

1   

2   

3   

4   
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13.3. Multipolynomial probabilities from truth tables. 

Rather than have probabilities defined under a multilinear relation, we now extend this to 

multipolynomials, that is, polynomials in more than one variable. 

 

For the unary NOT operation 

 

 

 

 

 

 

 

we consider the polynomial 

 [1 – (i = 0 to n)ic
i
] + [(i = 0 to n)ic

i
], 

so 

 0 = (i = 0 to n)ic
i
, 

 1 = 0. 

For a general unary operation 

 

 

 

 

 

 
 

similar considerations apply. 

For the binary C * D operation, 

 X = [(i = 0 to n)ic
i
][(j = 0 to n)jd

j
] 

     = 00 + 0(i = 1 to n)ic
i
 + 0(j = 1 to n)jd

j
 

+ [(i = 1 to n)ic
i
][(j = 1 to n)jd

j
], 

with 

 e4 = 00 

(e2 – e4) = 0(i = 1 to n)ic
i
 

(e3 – e4) = 0(j = 1 to n)jd
j
 

(e1 –  e2 –  e3 + e4) = [(i = 1 to n)ic
i
][(j = 1 to n)jd

j
]. 

It is possible to consider multipolynomial probability logics where 

 P(C * D) = X + (1 – Y) 

and Y is also a multipolynomial, not necessarily identical to X except at the ,  boundary for 

C * D. These multipolynomial probability logics are generally non-commutative. 

We can also consider the case with i, c
i
, j and d

j
 matrices for X and Y, or indeed for  and 

. In the latter case,  and  may be thought of as split into their hyperintricate basis 

components, so we are dealing with multi-valued logics. 

 

 

NOT  A A 

  

  

 

  ~  A A 

g1  

g2  
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The point of view of our work when it was conceived 37 years ago was that  and  are 

themselves in polynomial format. 

  

13.4. Hyperintricate multivalued probabilities. 

We can consider vectors  and . For instance, if we have two components for , given by A 

and B and two components for , namely A and B, then for two events C and D we have an 

isomorphism with a truth table in four events – J, K, L and M. We demonstrate this with 

portions of the two truth tables below. 

An example (with multiplication) is where A and A are real and B and B are imaginary. 
 

We can extend this idea further to matrix ’s and ’s, via the hyperintricate representation, as 

suggested by Ben Greenfield. In particular, for a unique representation of 2 × 2 matrices we 

obtain the intricate representation  = A +Bi +  + . 

                                                                                                                    

                                                                                                        

                                                                                                                               

                                                                                                                   

                                                                                                                 

                                                                                                                              

                                                                                                                       

                                                                                                                 

                                                                                                                           

 

 

 

 

 

 

 
 

13.5. Exponentiated probabilities and the exponential map.  

Let B: A  P(A) be a mapping. We allow the formation of P
2
(A), the “probability derived 

from a probability”, and P
n
(A). The NOT operation for linear probabilities 

a → a,  (1 – a) → (1 – a) 

satisfies NOT NOT = id, where id is the identity operation, giving 

 P[NOT(NOT A)] = P(A). 

We will denote this NOT mapping by B
op

. There is also the crossover transformation, B
c
 = 

B
cop

, which swaps the order of the pair (, ). For linear probabilities this is 

a → (1 – a) 

and 

(1 – a) → a, 

or equivalently 

a → (1 – a). 

 J K L M 

     

     

     

     

     

     

     

     

 

 C  D  

 A B A B 

 A B A B 

 A B A B 

 A B A B 

 A B A B 

 A B A B 

 A B A B 

 A B A B 
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For multipolynomial probabilities the solution set of P(NOT A) can range over various values 

for different mappings of NOT. In particular, for two such maps Pp(NOT A)  P(NOTp A) 

and Pq(NOT A)  P(NOTq A), in general we have outside the (, ) boundary 

  Pq(NOTq(Pp(NOTp A)))  P(NOTq(NOTp A)) ≠ P(A). 

Thus on the (, ) boundary the polynomial logic is Boolean, and outside of this it is 

intuitionalistic, as defined in What is mathematics of the Prologue. 

Consider the commutative diagram  

 C × D             P(C OR D) 

                                                            NOT 

                                                                              

            C
op

 × D
op

        P(C
op

 OR D
op

)        P(NOTcC OR NOTdD)                                                        

 

We have introduced a mapping of maps, called a functor, whose domain mapping is the OR 

operation and whose codomain mapping is the NOT & operation.  

 

For linear probabilities 

 P(NOT C OR NOT D) = P(NOT (C & D)), 

and we are mapping 

                                   OR                           NOT &                       &                  

P(C) + P(D) – P(C)P(D)               1 – P(C)P(D)           P(C)P(D), 

whereas for polynomial probabilities we define 

P(NOTc C ORc,d NOTd D) = P(NOTc,d (C &c,d D)), 

this idea being extendible to multiple events C, D, ... E. 

                                                                 

It is then possible to form the sum of P(C) and P(D), which is an operation of an abelian 

group that is not a probability within the limits c + (1 – c), 0 < c < 1, that is, as 

 P(C OR D) + P(C & D).      

 

For the mapping 

P(C OR D) + P(C & D)  P(C & D),      (1) 

the left hand side deals with the sum, so “inside range” the intersection of C and D is limited 

to be within the values c + d = 0 to 1, but now that we can deal with addition directly in terms 

of logical connectives “outside range”, the above mapping of (1) transforms the additive 

kernel 0 on the left to the multiplicative kernel 1 of P(C & D) on the right, and the sum does 

not have to be disjoint or within range. 

 

In certain circumstances, in particular when P(C) and P(D) are complex numbers, it is 

possible to obtain again a multiplicative function from the sum by an exponential map f from 

P(C) + P(D) → f[P(C)P(D)] 

given by 

 e
P(A) + P(B)

 = e
P(A)

e
P(B)

, 

because an abelian exponential map is of the form 

(G + H) → e(G + H) = (eG)(eH) 

and 

 (JK) → e(JK) = (eJ)K. 

 

When this function is non-commutative, we do not have these equalities on the right hand 

side. A consistent evaluation is then given in chapter XIV. This enables us to evaluate an 

exponential map from P(C * D). 
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13.6. The hyperintricate probability sheaf.  

A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a 

topological space. The data can be restricted to smaller open sets, and the data assigned to an 

open set is equivalent to all collections of compatible data assigned to collections of smaller 

open sets covering the original one. For example, such data can consist of the rings of 

continuous or infinitely differentiable Eudoxus-valued functions defined on each open set.  

Sheaves are by design quite general and abstract objects, and their correct definition is rather 

technical. There exist several varieties such as sheaves of sets or sheaves of rings, depending 

on the type of data assigned to open sets. 

There are also maps from one sheaf to another.  

Due to their general nature and versatility, sheaves have several applications in topology and 

especially in algebraic and differential geometry. First, geometric structures such as that of a 

differentiable manifold can be expressed in terms of a sheaf of rings on the space. In such 

contexts several geometric constructions such as vector bundles or divisors are naturally 

specified in terms of sheaves. Second, sheaves provide the framework for a very general 

cohomology theory, which encompasses also topological cohomology theories. Especially in 

algebraic geometry and the theory of complex manifolds, sheaf cohomology provides a 

powerful link between topological and geometric properties of spaces.  

It is usual in category theory to replace x  A, where x is an element of a set A, by an arrow. 

If we replace x by the set X, then in mZFC if sets X and A are not empty, then the logic 

operator X  A is mapped to the existence of an X  A (its only everywhere false value, 

which corresponds to the empty set , can be shown from the inclusion diagram 

 

  A 

 

  X 

 

for X  A). 

 

The ideas of logic and of sets can be conflated. We replace each logical operation C * D 

bijectively by the statement (x  s(C)) * (x  s(D)), where there is a bijection between the 

statement C and the set s(C).  The interpretation for sets of * is given directly by the above 

relation. Thus C & D maps to s(C) ∩ s(D) and C  D is mapped to s(C)  s(D).  

We now have 

 s(C) * s(D) ↔ C * D ↔ P(C * D). 

Thus the operations + and  of a noncommutative ring map directly to probability logic 

operations taken outside of range for OR and & respectively given by (1) and (2) of section 2, 

and their respective set operations for  and , with NOT mapping to set complement. We 

can introduce the inverse polynomial in the abelian case, which in the extended case of 

hyperintricate multipolynomials is a minimal model for associative noncommutative rings. 

By this means all set operations are transformed to operations in arithmetic and extensions of 

this idea. 
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Since we now have a complement and an intersection operation identified with a polynomial 

ring, which can be hyperintricate, we can introduce noncommutative sheaves. 

In order to consider mappings of sets 

 A  B 

         

 C  D 

it is convenient to stipulate the maximal partition of A  B  C  D in terms of derived 

subsets. 

 

Theorem 13.6.1. The intersection between each of the following 16 subsets in the partition of 

A  B  C  D is , and the union of the 16 is A  B  C  D. 

 

(1)    

(2)   A \ (B  C  D) 

(3)   B \ (A  C  D) 

(4)   C \ (A  B  D) 

(5)   D \ (A  B  C) 

(6)   (A  B) \ (C  D) 

(7)   (A  C) \ (B  D) 

(8)   (A  D) \ (B  C) 

(9)   (B  C) \ (A  D) 

(10) (B  D) \ (A  C) 

(11) (C  D) \ (A  B) 

(12) (A  B  C) \ D 

(13) (A  B  D) \ C 

(14) (A  C  D) \ B 

(15) (B  C  D) \ A 

(16) (A  B  C  D).  

The extension to more than four sets is obvious. 

It follows that each stable mapping is an automorphism of one or more of these partitioned 

subsets. 

 

13.7. The paper of 1980.  

Let A0, ... An be atoms in the propositional calculus with f false and t true, and formulas be 

denoted by φ(A0, ... An). Let the values of the truth table formula be ej0, ... jn with jm = 0 if  

Am = f, and jm = 1 if Am = t. Then the formula φ(A0, ... An) is represented by 
 

 φ(A0, ... An)   A0 ... An 

     e0, ... 0  f        f 

    t        ...     2
n
 occurrences 

   ...        f 

   ...        t 

    f        ...     2
n
 occurrences      (1) 

     e1, ... 1  t         t 
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With some atoms possibly repeated, each formula can be constructed from iterated unary 

 ~Ai Ai 

   e0  f 

   e1  t 

and binary 

 Aj * Ak    Aj   Ak 

    e00     f     f 

    e10     t     f 

    e01     f     t 

    e11     t     t 

operations. In particular, NOT and any binary operation with an odd number of t’s generates 

an arbitrary formula φ(A0, ... An), since there is always a transformation where the Am are 

combined together possibly with repetition either with or without NOT for bracketed and 

unbracketed terms in an expression. This bracketing can be of a standard form, for example 

 ((A * B) * (C * D)) * ((E * F) * (G * H)). 

Let ,   ℝ or ℂ, the real or complex numbers respectively,  ≠ , and let π be a bijection 

 ej0, ... jn         j0, ... jn =  or . 

Then there is a bijective mapping, π, of truth tables over the {f, t} set to over the {, } set. 

    (A0 ... An)            φ          φ(A0, ... An) 

         π       π 

 (P(A0) ... P(An))     φ′     φ′(P(A0), ... P(An)) 

         χ       χ′ 
 (P(X0) ... P(Xn))     φ″     φ″(P(X0), ... P(Xn))      (2) 

Definition 13.7.1. A probability logic over the propositional calculus is an extension of the 

domain of χ, P(A0) ... P(An) to its codomain P(X0) ... P(Xn), where P(Am) ⊂ P(Xm) ⊂ ℝ or ℂ, 

mapping via χ′ the formula φ′(P(A0), ... P(An)) to the formula φ″(P(X0), ... P(Xn)) ⊂ ℝ or ℂ, 

together with a map φ′ and a probability map φ″, such that diagram (1) above commutes. 

The probability logic is continuous (respectively smooth) if the function φ″ is respectively 

continuous or smooth, and polynomial if φ″ is a polynomial function on P(X0) ... P(Xn). 

The logic is domain bounded if {P(Xm)} ⊆ the closed interval [, ], codomain bounded if 

{φ″P(Xm)} ⊆ [, ] and totally bounded if it is both domain bounded and codomain bounded. 

The linear probability logic, the polynomial logic linear in φ″, corresponds to values in the 

measure theoretic formalism of non quantum mechanical probability where it is standard to 

set  = 0 and  = 1. 

A justification for introducing polynomial probability is that discrete multivalued logics with 

r > 2 truth value states may always be embedded in them. This is because intermediate values 

between  and  in the domain mapping to the probability codomain may always be chosen 

with a finite number of arbitrary values in some probability polynomial, and these values may 

be chosen independently to represent other logic states. 

For the linear probability over the propositional calculus, which is a degree one polynomial 

probability, denote φ″(P(X0), ... P(Xn)) by P1(X0, ... Xn). 

Theorem 13.7.2. P1(X0, ... Xn) = (1 – a) + a      (3) 

for some a  ℝ or ℂ. 
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Proof. P1(Xm), which is a linear extension of P1(Am), is a subset of the codomain of possible 

values of P1(X0, ... Xn). Since P1(Am) is  or , P1(Xm) must contain  and  as a linear 

combination, and so is of the form (1 – am) + am. P1(X0, ... Xn) is then a linear combination 

of the P1(Xm), it must also contain the values  and , and thus is of the form (1 – a) + a.  

Definition 13.7.3. The Kronecker delta δjk = 1 when j = k and is zero otherwise. 

Theorem 13.7.4.                                         
 
            

 
    

 
   , (4) 

where   is the Kronecker delta, ar  ℝ or ℂ, and ar = 0 when P1(Xr) = . 

Proof. By explicit calculation 

 ( – )P1(~X0) =  0 –  1 + ( 1 –  0)P1(X0)      (5) 

or equivalently this can be found from 

 P1(Xr) = (1 – ar) + ar, ar  ℝ or ℂ,       (6) 

 P1(~X0) = a0 1 + (1 – a0) 0.        (7) 

Hence the formula is valid in the trivial case. 

Assume for n, we prove for n + 1. The induction proceeds by adding a subscript 0 to the rows 

j0, ... jn and a column of ’s to the right of the ,  table similar to truth table (1), and under it 

adding a subscript 1 to the j0, ... jn rows and a column of ’s to the right of the table. 

When an+1 = 0 the formula in the top rows is the same except j0, ... jn,0 substitutes j0, ... jn. 

When an+1 = 1, so P1(Xn+1) = , the formula on the bottom rows is the same with the 

substitution j0, ... jn,1 for j0, ... jn. Hence the formula is satisfied on the j0, ... jn+1 boundary. 

Further it is linear in the ar separately, which are independent, and j0, ... jn+1. But the equation 

satisfies 2
n+2

 conditions in 2
n+2

 unknowns. It is therefore unique, being linear in the j0, ... jn 

and multilinear in the ar.  

In order that (4) may be seen explicitly for binary operations, denote the 16 binary operations 

by & (and), OR (or),  (if and only if),  (implies),  (is implied by), [ (gives), ] (is given 

by) and T (identically true), with NOT & etc. the operations with t and f reversed, as follows. 

 & OR    [ ] T Aj Ak 

  f  f  t  t  t f f  t  f  f 

  f  t  f  f  t f t  t  t  f 

  f  t  f  t  f t f  t  f  t 

  t  t  t  t  t t t  t  t  t 

Corollary 13.7.5.  

 P1(X0 & X1) = (1 – a0a1) + a0a1       (8) 

 P1(X0 OR X1) = (1 – a0 – a1 + a0a1) + (a0 + a1 – a0a1)    (9) 

 P1(X0  X1) = (a0 + a1 – 2a0a1) + (1 – a0 – a1 + 2a0a1)              (10) 

 P1(X0  X1) = (a0 – a0a1) + (1 – a0 + a0a1)                (11) 

 P1(X0  X1) = (a1 – a0a1) + (1 – a1 + a0a1)                (12) 

 P1(X0 [ X1) = (1 – a1) + a1                  (13) 

 P1(X0 ] X1) = (1 – a0) + a0                  (14) 

 P1(X0 T X1) =                    (15) 

 P1(X0 NOT * X1) =  +  – P1(X0 * X1).                 (16) 
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Corollary 13.7.6. 

 P1(X0 NOT  X1) =  + P1(X0 OR X1) – P1(X0 & X1).              (17) 

 P1(X0  X1) = – + P1(X0  X1) + P1(X0  X1).               (18) 

Corollary 13.7.7. By theorem 2, if an identity between formulas involving NOT is valid on 

independent atoms, taking the linear probability of the extension of both sides results in a 

correct formula.  

Definition 13.7.8. Let there be a u dimensional impossibility vector , and a u dimensional 

certainty vector . The vector probability is given by (4) with   substituted by the vector   =  

or . 

Definitions 13.7.9. The matrix probability is obtained from (4) by replacing the ar by u × u 

matrices, and substituting 1 with the identity matrix. Column vector probabilities may be 

substituted for  and . The matrix probability is bounded if the matrices take values of a 

homotopy between zero and the identity matrix with determinants ⊆ [0, 1]. 

Our last objective is to obtain expressions for unary and binary polynomial probabilities. 

Theorem 13.7.10. Let                
     

 
    be the unary polynomial probability of 

degree n. By explicit calculation, and using a choice of representation of the lower numbered 

indexed values of dr we get  
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Corollary 13.7.11. Let χ in (1) be linear, that is Pn(X0) = (1 – c) + c where c  [0, 1]. Then 

using the binomial theorem the polynomial Pn(~X0) is the Legendre polynomial 
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Theorem 13.7.12. Let                     
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13.8. Exercises.  

(A) A nuclear power plant has two processes. The probability of the first process failing is A 

= a + (1 – a), and of the second failing is B = b + (1 – b). There is a 1/5
th
 certainty that if 

A fails then B will. What is the probability that A and B will happen together? 


