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CHAPTER IV 
 

Nonassociative algebras derived from matrices 
 

4.1. Introduction. 
 

We develop further the concept of a matrix product, also introducing Lie and Kac-Moody 

algebras. Let A and B be hyperintricate matrices. The hyperintricate methodology is firstly 

redefined by the introduction for a permutation P of the hyperintricate interlayer operator P, 

which permutes layers on the right in the matrix product A P B.  

Next we introduce operations in the intricate case which in combination allow each element 

of A and B in these products to be expressed uniquely in the given variables as bilinear 

expressions. These operations, the diamond operator , the right roll operator S and the left 

roll operator S, are in general nonassociative. Their algebras are expressed in the intricate 

formalism, and this is extended to the hyperintricate case by the P operator.  

We develop the interrelationship between these ideas, by discussing combined and other 

operations, and discuss split products which reduce these operations to more primitive ones. 

 

4.2. The hyperintricate interlayer operator, P.  

Let P be a permutation on n objects, which can be represented in permutation cycle notation, 

as in the example 

 (1 2 3)(4 5)(6 7 8 ... n). 

Let Яn and Чn be two n-hyperintricate numbers. The usual matrix product for layer t, where 1 

< t < n corresponds to multiplying for each t the intricate number rt, which is at layer t for Яn, 

and ht which is also at intricate layer t for Чn. 

For Яn and Чn, define the operation Яn P Чn as the matrix operation which corresponds on 

layer t to the intricate product of rt with hP(t). Then for two permutations P1 and P2 involving a 

third hyperintricate number Иn 

 Яn P1 (Чn P2 Иn) = (Яn P1 Чn) P1 P2 Иn. 

The interlayer operator is distributive. 

Яn P (Чn + Иn) = (Яn P Чn) + (Яn P Иn). 

(Яn + Чn) P Иn = (Яn P Иn) + (Чn P Иn).  

 

4.3. The intricate diamond operator, . 
 

We explain the diamond product firstly in terms of 2  2 matrices 

                                                                                   

                                              =                                       . 

 

The diamond operation is not expressible in any way by the normal matrix product. 

Under the transformation c  -c, d  -d the right hand side matrix becomes 
             

                                                 

ae + bg af + bh 

-ec – dg  cf + dh 

  

e f 

g h 

 

a b 

c d 

 

ae + bg af + bh 

ec + dg  -cf – dh 

  



04.2 

 

 

A reversal of sign between bottom left and top right elements may be found under the 

transformation a  -a, e  -e, b  -b and g  -g. 

  

We have the following relations for intricate basis elements 1, i, , . 

 1  1 = 1, i  i = -1,    = 1,    = 1, 

 1  i =  = i  1, 1   =  =   1, 1   = i =   1, 

 i   = -i =  -  i, i   =  = -  i,    =  = -  . 

 

The equations above show that 1, i,  and  have inverses under , with the left inverse equal 

to the right inverse.  

 

For an intricate number M = m1 + ni + p + q, define the conjugate M

* = M* by 

 M

* = m1 – ni – p – q.  

We obtain 

M

*  M = m

2
 + n

2
 – p

2
 – q

2
 = M  M


* 

and thus 

 M
-1

 = M

*/(m

2
 + n

2
 – p

2
 – q

2
), 

when not divided by zero.  

 

The diamond operator is distributive. For intricate A, B and C 

 (A + B)  C = (A  C) + (B  C) 

 A  (B + C) = (A  B) + (A  C).  

 

The diamond operation is not associative in general, for example 

 (1  i)   = 1  1  (i  ) = . 

 

Operations of multiplication on the left or right by i,  and  under the usual matrix product 

interchange whole rows and columns, multiplying each row or column everywhere by 1 or -1. 

The diamond operation multiplies just one element by -1, or under transformation of signs of 

elements an odd number by -1. It follows that two such operations by i,  or  can sometimes 

convert to usual matrix multiplication. For instance 

 (A  1)  1 = A = 1  (1  A).  

 

4.4. The intricate left and right roll operators, S and S. 
 

The right roll operator 1 rotates clockwise the entries of the intricate matrix on the right, and 

then the usual matrix product is formed. Thus 

                                                                                     

 1                       =                                                                                                                                                                                                                                          

                                                              

This is not expressible in terms of the usual matrix product, nor the diamond product, nor a 

combination of these. 
 

If two rolls take place, we will denote the operation by 2. In general when S rolls take place 

and S = S (mod 4) then S = S.  

 

 

 

a b 

c d 
ag + bh ae + bf 

cg + dh  ce + df 

 e f 

 g h 
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Because                                                                                

                                                                                                                   

                           1                                                         

 

amounts to one roll, the iteration 

 1 1 (1 1 A) = 1 2 A 

leads to the result that S can be derived from 1 operations. For notational convenience on 

occasion we may drop the S suffix in 1 to form . 
 

In terms of the intricate operation, 1 has the following algebra 

 1  1 = ,  i  i = ,    = ,    = , 

 1  i = - = -i 

            1   = i =  

            1   = 1 =   1, 

 i   = -1 =   i

i   = i =   i,  

   =  = -  

From these relations it can be seen that the S algebra has inverses. The left and right inverse 

are identical.  
 

The conjugate M* of M = m1 + ni + p + q is 

  M* = m – n + pi – q1, 

so that  

M  M* = m
2
 + n

2
 – p

2
 – q

2
 = M*  M.  

 

For intricate A, B and C the S algebra is distributive 

 (A + B) S C = (A S C) + (B S C) 

A S (B + C) = (A S B) + (A S C). 
 

The left roll operator S rotates clockwise the entries of the intricate matrix on the left, then 

forming the usual matrix product. The intricate algebra for S maps bijectively 

 A S B  B S A, 

the order in the product in terms of usual matrix multiplication now being reversed in the 

mapping. For the case of a simultaneous S and S operation, we denote this by SS.  

 

4.5. Combined and other operations. 
 

The usual, diamond and roll products can be applied in different combinations on each layer 

of a hyperintricate number, possibly including the hyperintricate layer operator. On occasion 

we may denote the layers in a column, with the layer operators for each layer matched with 

the column. For example 

 1     = i = -i1. 

  1  i   -1 

 

There are a number of other operations. The tilde operator, ~, converts the hyperintricate 

diagonal 1  1, and all other hyperintricate numbers over all layers are multiplied 

collectively by minus one. Thus if A = 1 + aii, then A
~
 = 1 – aii. 

 

  1 0 

 0 1 

 

 e f 

 g h 

 



04.4 

 

Since the usual product is not commutative, in general  

A(B
~
)  B(A

~
). 

We will denote A(B
~
) under usual multiplication by A ~ B. Because of multiplicative 

associativity of minus signs, but not additive associativity, these features carry over to the ~ 

operation. 

 

The conjugate * acts on individual layers, but otherwise acts like ~. 

 

The transpose T acts on individual layers, and converts i  -i. We have seen that for 

hyperintricate numbers the transpose on all layers corresponds to the matrix transpose as 

commonly understood. 

 

Under usual matrix multiplication T is contravariant 

 (AB)
T
 = B

T
A

T
. 

We may combine the usual covariant product AB = AB with the T operator to form the right 

transpose operation 

 A TR B = A(B
T
).  

The left transpose operator LT satisfies 

A LT B = (A
T
)B. 

Normally, the transpose operation is not associative, nor is A LT B or A TR B. 

 

We may introduce transposes (as i  -i) on a layer with diamond and roll operators. For 

instance 

 1 TR  = 1  (
T
) = 1   = i.    

 

4.6. Split products. 
 

Usual matrix multiplication satisfies 

                                                                                             

        .                     =                                                =                     +  

                                                                                                                                                                        
                                                                                                                                                                       

where we will write this as 

 A.B = C + D. 

The matrix C is the left split product and we also write 

 A|.B = C. 

The right split product is 

 A.|B = D. 

 

These operations can be extended to the diamond and roll products, where we write 

 A|B, 

 A|B, 

 A|1B, etc. 

 

We define the split transpose of A.B by 

 (A|.B)
T
 = B

T
|.A

T
. 

 

The split products may be carried over to layers, with different operations on each layer.  

  

ae + bg af + bh 

ec + dg  cf + dh 

a b 

c d 

ae af 

ec cf 
e f 

g h 

 

bg bh 

dg dh 
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4.7. Modifier functions and products. 
 

A function h may be applied to a matrix A = aij to form the matrix hij = h(A). A special kind 

is localised to independent functions, so hij is a function of the aij locally of the form h(aij). 

The identity function occurs when h(aij) = 1aij. 

 

These functions may be combined with products of the form already discussed, to form 

composite products. 

 

For example, we may consider the dimension of a matrix to be n + b, where n is a natural 

number and b ∊ the semi-closed, semi-open interval [0, 1[. Then hij = 1 for the array elements 

indexed by 1 to n, and b otherwise. For matrices of negative dimension, consider hij = -1 in 

all elements. 

                                                                                 

4.8. Lie algebras of type sln(ℂ).  

The best introduction to the theory of Lie algebras and root systems is probably Roger Carter’s 

in Lectures on Lie groups and Lie algebras [CSM95]. Our purpose in following closely the 

development there is so that it is embedded in this work, but we do not take its development 

as far as discussing groups of Lie type. To generalise sln(ℂ) to gln(ℂ) see [1Ca72], [1Ca05] 

and for Lie groups [1Ca93]. 

A Lie algebra is a vector space g over a field   in which is defined a multiplication 

 g × g → g, 

 x, y → [x, y], 

where [x, y] is called the Lie bracket, satisfying the axioms 

 (i) [x, y] is linear in x and y. 

 (ii) [x, x] = 0 for all x ∊ g. 

 (iii)  The Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] holds. 

The set of n × n matrices, A, B, ... with entries in a field   can be made into a Lie algebra 

with Lie bracket [A, B] by setting 

 [A, B] = AB – BA, 

and this is denoted by gln( ), the general linear Lie algebra over the field  . 

It follows for these matrices that 

 [A + A′, B + B′] = [A, B] + [A, B′] + [A′, B] + [A′, B′] 
 [A, A] = 0 

 [A, B] = -[B, A], 

and the Jacobi identity holds  

 [[A, B], C] + [[B, C], A] + [[C, A], B] = 0,      (1) 

since this is 

 ABC – BAC – CAB + CBA 

 + BCA – CBA – ABC + ACB 

 + CAB – ACB – BCA + BAC 

  = 0,       

but the Lie bracket is not generally associative 

 [[A, B], C] ≠ [A, [B, C]]. 
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Let sln(ℂ) be the set of n × n matrices with complex entries, a zero sum of diagonal entries, so 

the trace tr is zero, and with Lie brackets.  

Example 4.8.1. The Lie algebra of a 2 × 2 intricate matrix has a sl2(ℂ) basis of i, α, ϕ, since 

 [i, α] = -2ϕ, [i, ϕ] = 2α and [α, ϕ] = 2i, 

and all of i, α, ϕ are matrices with zero trace. 

The trace tr, of the matrix Lie bracket is zero. For instance, since 

      )                           )  
   

 
   

 
   

 
   , 

if A and B ∊ gln(ℂ) then 

 tr[A, B] = tr(AB – BA) = tr(AB) – tr(BA) = 0,     (2) 

for any two n × n matrices. As we have seen in chapter II, the diagonal trace of an intricate 

actual number  and the hyperintricate traces involving s are all zero, so for 2
n
 × 2

n
 

matrices, equation (2) reduces to the case where the real hyperintricate trace is zero, 

 tr1[A, B] = tr1(AB – BA) = tr1(AB) – tr1(BA) = 0,     (3) 

where 1 is interpreted as a hyperintricate diagonal 1. 

Thus gln(ℂ) contains sln(ℂ), which is a nontrivial proper subspace when n > 1. By a subspace 

we mean the set of all [A, B].   

If h is the set of diagonal matrices of sln(ℂ) where tr is zero, this is a subalgebra of rank n – 1. 

Further, [h, h] = 0, so h is commutative. 

For finitely many summands, direct sums are the same as direct products, where for sets this 

is the Cartesian product. For infinite subspaces, for direct sums all but a finite number of 

coordinates must be zero, whilst for direct products all but a finite number of multiples must 

be 1. Let Eij be an elementary matrix, the unit diagonal matrix with just rows i and j swapped. 

Then 

 sln(ℂ) = h ⊕  ℂ     ≠ ,        (4) 

where ⊕ is a direct sum of subspaces. This is because row i = 1 can be written as a linear 

combination of j – 1 terms in Eij where i < j, down to row n – 1 as a linear combination with 

1 term, and similarly for j < i, which supplies sufficient degrees of freedom to write complex 

elements of (4) uniquely. 

Given a vector space V over a field  , the span of a set S of vectors (not necessarily finite) is 

defined as the intersection W of all subspaces of V that contain S. W is referred to as the 

subspace spanned by S or by the vectors in S. Conversely we say S spans W. 

By a dual space of a linear vector space V, if we interpret V as the space of columns of n real 

(Eudoxus) numbers,  , or complex numbers, ℂ, its dual space V
* 

is typically written as the 

space of rows of n Eudoxus or complex numbers. If V consists of the linearly independent 

space of geometrical Eudoxus vectors in the plane, then the level curves of an element of V
*
 

form a family of parallel lines in V. So an element of V
*
 can be intuitively thought of as a 

particular family of parallel lines covering the plane. For a linearly independent space V of 

dimension n, the elements of V* are parallel hyperplanes of dimension n. In the finite case 

the space V* has the same dimension as V and the dual of the dual is isomorphic to the 

original space: V** = V. If the vectors of V are linearly dependent, so the rank r is less than 

the dimension n of V, then the rank of V* is r, being the number of linearly independent basis 

elements of V*.  
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Now choose a representative x of h 

     

   
  

  
  

  
  

  
   

 , 

with  1 + ... +  n = 0, so these are linearly dependent of rank n – 1, then let 

 [xEij] = ( i –  j)Eij, 

so we have a mapping 

 x → ( i –  j). 

Note that we have n(n – 1) 1-dimensional representations of h arising in this way, being the 

number of combinations of ( i –  j) with i ≠ j. These are called the roots of sln(ℂ) with 

respect to h. Let Φ be this set of roots. We will show how it lies in the dual space h*. 

If β ∊ Φ then -β ∊ Φ also, since the map x → ( j –  i) is the negative of the map x → ( i –  j). 

Thus the roots are not independent. The roots do however span h*. For define βi ∊ Φ by  

 βi(x) =  i –  i+1. 

Then β1, β2, ... βn-1 are linearly independent and form a basis of h*. Let  = {β1, β2, ... βn-1}. 

 is called the set of fundamental roots, or simple roots. We consider the way the roots are 

expressed as linear combinations of the fundamental roots. The root x → ( i –  j) is equal to 

β1 + β2 + ... + βn-1  if i < j 

-(β1 + β2 + ... + βn-1) if j < i. 

Thus each root in Φ is a linear combination of fundamental roots with coefficients in ℤ, and 

these integers can all be partitioned into nonnegative combinations Φ+
 of  and nonpositive 

combinations Φ-
 so that 

 Φ = Φ+
 ∪ Φ-

  and  Φ+
 = -Φ-

. 

Given an element x of a Lie algebra g, we define the adjoint action of x on g as the map 

 adx: g → g  

where for all z in g 

adx(z) = [x, z]. 

Let g be a Lie algebra over a field  . Then the linear mapping x → adx is a representation of 

the Lie algebra and is called the adjoint representation of the algebra. The Lie bracket is, by 

definition, obtained from two operators: 

 [adx, ady] = adx○ady – ady○adx  

where ○ denotes composition of linear maps. By the Jacobi identity we have 

 adx○ady(z) – ady○adx(z) = [x, [y, z]] – [y, [x, z]] = [[x, y], z] 

        = ad[x, y](z). 

Now, supposing g is of finite dimension, the trace of the composition of two such maps 

defines a bilinear form  

 <x, y> = tr(adx○ady),  

where <x, y> is the Killing form on g. The name Killing form first appeared in a paper of 

Armand Borel in 1951. Since tr(AB) = tr(BA), the Killing form is symmetric 

 <x, y> = <y, x>. 

The Killing form is an invariant form, in the sense that it is associative  

<[x, y], z> = <x, [y, z]>, 

since 

<[x, y], z> = tr([x, y]z) = tr(xy z – yx z) = tr(xy z) − tr(y xz). 
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Similarly, 

<x, [y, z]> = tr(x [y, z]) = tr(x yz) − tr(x zy). 

Finally, tr(y(x z)) = tr((x z)y). 

The Killing form on g is nondegenerate in that 

 <x, y> = 0 for all y ∊ g implies x = 0. 

 

We may restrict the Killing form on g to h, to give a map h × h → ℂ. It can be shown that this 

map is nondegenerate on h, so that 

x ∊ h and <x, y> = 0 for all y ∊ g implies x = 0. 

We may thus define a map h → h* given by x → fx where 

 fx(y) = <x, y> for x, y ∊ h, 

which is a linear map h → h*. Thus each element of h* has a form fx for just one x ∊ h, so we 

can define a map h* × h* → ℂ by 

 <fx, fy> = <x, y> for x, y ∊ h. 

 

We may restrict this linear form to the real (Eudoxus) vector space   
 . It can be shown from 

the representation of i as an integer matrix that its values lie in  . Thus we have a map 

   
       

  →   . 

This map has the property that 

 < ,  > > 0 for all   ∊   
 . 

Furthermore < ,  > = 0 implies   = 0, so that the scalar product on   
  is positive definite.   

  

is therefore a Euclidean space. 

This Euclidean space   
  contains the set of roots Φ. The properties of the configuration 

formed by the roots in   
  is important in the classification of the simple Lie algebras g. 

Example 4.8.2. Let g = sl2(ℂ). Then dim h = 1. Let  = {β1}. Then Φ = {β1, -β1}. The 

configuration formed by Φ in the 1-dimensional space   
  is 

       -β1                  0  β1 

 

For g = sl3(ℂ), dim h = 2, and  = {β1, β2}, so Φ = {β1, β2, β1 + β2, -β1, -β2, -β1 – β2}. The 

configuration formed by Φ in the 2-dimensional Euclidean space   
  is 

 

  β2       β1 + β2 

 

 

      -β1             β1 

 

 

      -β1 – β2           -β2 

 

The configuration formed by the root system Φ is best understood by introducing a certain 

group of non-singular linear transformations of   
  called the Weyl group. For each β ∊ Φ let 

 β    
   →   

   be the map defined by 

     )      
        

        
 β. 
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Note that    β)    β and     )     whenever  β     . Thus  β is the reflection in the 

hyperplane orthogonal to β. Let W be the group generated by the maps  β for all β ∊ Φ. W is 

called the Weyl group. 

W has favourable properties. Firstly it permutes the roots, that is,   β)   Φ for every β ∊ Φ 
and w ∊ W. Consequently W is finite, because there are only a finite number of permutations 

of Φ, in which Φ spans the linear transformations   
 , where each of these permutations 

comes from just one such linear transformation. We also have Φ = W(), which means given 

any β ∊ Φ, there exists a β′ ∊  and w ∊ W such that β = w(β′). Furthermore, W is generated 

by the  β  for β′ ∊ . 

The importance of the Weyl group is that it enables us to reconstruct the full root system Φ 

given only the set  of fundamental roots. For given  the Weyl group is determined, being 

the group generated by the reflections  β  for β′ ∊ . The root system Φ is then determined, 

since Φ = W(). Thus, given , the root system Φ is obtained by successive reflections  β  

until no further vectors can be obtained. 

An example when g = sl3(ℂ) is shown below 

  β2 

 

 

          β1 

 

 

 

 

Given β1 and β2 the remaining roots are obtained by reflecting successively by    
 and    

.  

We note that 

    
 β    β   

          

          
 β . 

If βi, βj ∊  with i ≠ j, then    
 β   is a root, and so is a ℤ-combination of βi and βj. Since the 

coefficient of βj is 1, the coefficient of βi must be a nonnegative integer, because the given 

root lies in Φ+
. It follows that 

  
          

          
  ℤ and is < 0. 

We define       
          

          
, 

where the elements of Aij are called Cartan numbers, and the matrix they form the Cartan 

matrix. We have Aij   ℤ, where Aii = 2 and Aij for i ≠ j is < 0. 

Let θij be the angle between βi and βj. This angle can be found from the cosine formula 

  β  β      β  β  
    β  β  

   θ  . 

Therefore 

      θ      
 β     β  

 β     β  
  

 β     β  

 β     β  
, 

giving 

      θ           . 

We will write nij = AijAji. Then nij ∊ ℤ and nij > 0. Furthermore, because 
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 -1 < cos θij < 1 

we get 

 0 < 4cos
2 θij < 4, 

and since when i ≠ j, θij ≠ 0, we obtain 
 0 < 4cos

2 θij < 4. 

Thus the only possible values of nij are 0, 1, 2 and 3. 

We will now encode these results about the system  of fundamental roots in terms of a 

graph. 

The Dynkin diagram  of g is the graph with nodes labelled 1, ..., m mapping bijectively to 

the set  of fundamental roots, so that the nodes i, j with i ≠ j are joined by nij bonds. 

Example 4.8.3. Let g = sl3(ℂ). Then  = {β1, β2} and  

    
 β )   β + β ,    

 β )   β + β , 

thus A12 =A21 = -1, and n12 = 1, giving the graph  

  

  1        2 

The Dynkin diagram is uniquely determined by g. The choice of fundamental system  does 

not matter, since it can be shown that two fundamental systems 1 and 2 have the property 

that 1 = w(2) for some w ∊ W. 

The Dynkin diagram of g has the following properties.  is a connected graph provided g is a 

nontrivial simple Lie algebra. Any two nodes are joined by at most 3 bonds. Let Q(x1, ..., xm) 

be the quadratic form 

          )      
        

 
        

 
       . 

This quadratic form is determined by the Dynkin diagram. For example if  is  

  

  1        2 

then we have 

        )     
 +     

        . 

The quadratic form Q(x1, ..., xm) is positive definite because it contains the scalar product in 

          )    
     

 
   

      
 
     

 
   

      
 .  

We will consider the problem of determining all graphs  with the above properties. 

Theorem 4.8.4. Consider graphs  with the following properties: 

 (i)  is connected 

 (ii) The number of nodes joining any two bonds is 0, 1, 2 or 3 

 (iii) The quadratic form Q determined by  is positive definite. 

Then  must be one of the graphs in the following list: 

 A1  A2  A3  A4 

      . . . .  

 

   B2  B3  B4 

             . . . . 
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   D4  D5             D6 

 

          . . . . 

 

 

  E6   E7    E8 

 

 

 

 F4 

 

 

 G2     list 1 

 

 

We first consider to what extent the Dynkin diagram determines the matrix of Cartan 

integers. Recall that 

 nij = AijAji i ≠ j, 

and that the Aij are integers < 0. Furthermore Aij = 0 if and only if Aji = 0. 

If nij = 0 then Aij = Aji = 0. If nij = 1 we must have Aij = -1 and Aji = -1. However, if nij = 2 we 

have two possibilities: either Aij = -1 and Aji = -2 or Aij = -2 and Aji = -1, and because 

       
          

          
 , 

we obtain 

 
   

   
  

          

          
. 

In the first case, we have  β     β     β     β  , and in the second case  β     β     β     β  , 

which we notate by putting an arrow on the Dynkin diagram pointing towards the long root, 

where the arrow can be thought of as an inequality between the root lengths. In the first case 

we have the diagram 

  

 

and for the second case 

  

 

Likewise if nij = 3 there are two possible factorisations of nij = AijAji which can be 

distinguished by putting similar directional arrows on the triple bond. 

In the cases where  = B2, F4 and G2 in list 1, the diagrams are symmetric, so there is no 

difference, but when  = Bm for m > 2 we can find two different types of graph, which we 

denote by Bm and Cm in the diagrams below. 

     Bm  

 

     Cm  
 

Thus for Bm the last fundamental root is shorter than the others, and for Cm it is longer.  

Written explicitly the Dynkin diagrams correspond to the matrices of Cartan integers 
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Proof of theorem 4.8.4. A subgraph of a graph  is obtained from  by removing certain 

nodes or decreasing certain bond lengths or both (so            is a subgraph of                   ). The 

list of graphs given in the theorem will be called the standard list. We note that each subgraph 

of a graph on the standard list is also on the standard list. It is not difficult to show that if the 

quadratic form of a graph  is positive definite, then the quadratic form of any subgraph of  

is positive definite also. 

Now the quadratic form of a graph  is represented by a symmetric matrix M. 

We recall from linear algebra that Q(x1, ..., xm) is positive definite if and only if all the 

leading minors of M have positive determinant. However the leading minors of M are simply 

matrices M corresponding to certain subgraphs of . In order to show that Q(x1, ..., xm) is 

positive definite it is therefore sufficient to check that det M > 0 for each graph  on the 

standard list. This is readily verified. 

We now wish to prove conversely that the graphs on the standard list are the only ones 

satisfying the given conditions. In order to do this we introduce a second list. 

                 
  

                                                                           . . . . 

 

                             
                                                                                      . . . . 

 

 

                  
                                                                                        . . . . 

 

                            

 

            . . . . 
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         list 2 

 

 

It may be readily checked that each graph  on list 2 has a quadratic form Q(x1, ..., xm) with 

symmetric matrix M satisfying det M = 0. Thus Q(x1, ..., xm) is not positive definite. Hence 

any graph  satisfying our given conditions can contain no subgraph on list 2. 

Let  be a graph satisfying our conditions (i) (ii) and (iii). Then  has no cycles, otherwise  

would contain a subgraph of type      has at most one multiple bond, otherwise  would 

contain a subgraph of type    .  cannot have both a multiple bond and a branch point, 

otherwise it would contain a subgraph    . Also  cannot have more than one branch point, 

otherwise  would contain a subgraph    . 

Suppose  has a triple bond. Then  must be G2, as otherwise  would contain a subgraph 

   . We may therefore assume that  contains no other triple bond than for G2. 

Suppose  has a double bond. Then  contains no branch point, so is a chain. If the double 

bond is at one end of the chain then  = Bm, if not then  must be F4, otherwise  would 

contain a subgraph    . 

So we may assume that  contains only single bonds. If  has no branch points then  = Am. 

So posit  contains a branch point, which must have only three branches because it cannot 

contain a subgraph    . Let the length of the branches be m1, m2 and m3, with m = m1 + m2 + 

m3 + 1 and m1 > m2 > m3. Then m3 = 1, otherwise  would contain a subgraph    . Also m2 < 

2 otherwise  would contain a subgraph    . If m2 = 1 then  = Dm. So suppose m2 = 2. Then 

m1 < 4, otherwise  would contain a subgraph    . If m1 = 2 then  = E6. If m1 = 3 then  = 

E7. Lastly if m1 = 4 then  = E8. 

Therefore  must be one of the graphs on list 1, the standard list.  

The classification of the simple Lie algebras was achieved by W. Killing in a series of papers 

in Mathematische Annalen between 1888 and 1890, and independently by Eli Cartan in his 

Paris thesis of 1894.  

 
 

4.9. Kac-Moody algebras. [Ka90] 

There are 26 sporadic groups, of which the largest is the Monster. 20 of them are subgroups 

or subquotients of the Monster. 
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It is interesting to consider to what extent the Monster is related to the Lie theory. It is known 

that the Monster is the automorphism group of an infinite dimensional algebra called a vertex 

operator algebra. Vertex operators appear in the representation theory of the infinite 

dimensional Lie algebras known as affine Kac-Moody algebras. These are Lie algebras 

corresponding to the extended Dynkin diagrams in list 2 of section 8. Thus the Monster can 

be related to the theory of Kac-Moody algebras. 

A generalised Kac-Moody algebra is a Lie algebra that is similar to a Kac-Moody algebra, 

except that it is allowed to have imaginary simple roots. Generalised Kac-Moody algebras are 

also sometimes called GKM algebras, Borcherds-Kac-Moody algebras, BKM algebras, or 

Borcherds algebras. The best known example is the Monster Lie algebra. A question that 

arises from the allocation of a real matrix      
  
   

 , is whether the existence of imaginary 

roots is bogus. 

The reason for the existence of infinite Kac-Moody algebras can be expressed in nonstandard 

set theory. The property of being a finite Lie algebra holds for all finite m ∊ ℕ. For standard 

set theory infinite m ∊ ℕ are void. A Kac-Moody algebra is nowhere a finite Lie algebra, so 

infinite Kac-Moody algebras are at least admissible in logical reasoning. For nonstandard set 

theory there exist infinite m, so the set of these is nonvoid. Thus in nonstandard set theory 

infinite Kac-Moody algebras exist and the property of being a finite Lie algebra and an 

infinite Kac-Moody algebra can both hold. 

 

4.10. Exercises. 
 

(A) Let X and Y be symmetric matrices and A and B be antisymmetric matrices. Show 

 (X + A)(Y + B) + (X – A)(Y + B) + (X + A)(X – B) + (X – A)(X – B) = 4XY, 

(X + A)(Y + B) + (X – A)(Y + B) – (X + A)(X – B) – (X – A)(X – B) = 4XB, 

(X + A)(Y + B) – (X – A)(Y + B) + (X + A)(X – B) – (X – A)(X – B) = 4AY, 

(X + A)(Y + B) – (X – A)(Y + B) – (X + A)(X – B) + (X – A)(X – B) = 4AB. 

Express the above relations in terms of the transposes (A + Y)
T
 and (Y + B)

T
. Reformulate 

these in terms of the matrix product, the left matrix product and transposes. 

(B) Using a 2 × 2 matrix in its intricate representation or otherwise, show that the product of 

two symmetric matrices is not necessarily symmetric. 


