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Foreword 

 
In this outline of our conceptual work, we describe explorations, which have been common 

mathematical currency for over two centuries, of the mathematical landscape concerning the 

theory of whole numbers. It is a review based on elementary methods, where the game is one 

of not using complex numbers.  

In chapter 1 discussing global field theorems for exponential powers, section 2 introduces an 

exponential notation. Section 3 restates foundational rules for real exponentiation, providing 

proofs for the basic ‘binomial exponent’ and ‘geometric exponent’ theorems. Then section 4 

continues with new cyclotomic variants of the ‘Fermat subtraction’, ‘Fermat addition’ and 

‘linear combination’ factorisation theorems, the latter being a formula that is a linear 

combination of the previous two. Finally section 5 develops in many variables the linear 

combination factorisation theorem. 

Prime number, factorisation and divisibility theorems are discussed in chapter 2. In particular, 

we obtain primality conditions not dealt with in most textbooks, e.g. for ‘generalised Fermat’ 

numbers, for positive natural numbers  or  > 1 and p, we prove that no number of the form 


p
 + 

p
 is prime, except for the possibilities p = 1 or p a power of 2. For ‘generalised 

Mersenne’ numbers, no representations of primes are of the form 
p
 – 

p
, except for the 

possibilities p = 1, or  = ( – 1) and p prime. We also discuss a linear combination of powers 

prime number theorem and continue with a discussion on factorisation of pth powers 
p
 ± 

p
. 

This chapter also discusses extensions of Fermat’s little theorem, including theorems 

connected with reciprocity. We make some remarks on Fermat’s last theorem. 

Chapter 3 analyses using elliptic curves the number of solutions mod 4 of differences and 

sums of pth and different powers. 

Generalised Quadronacci numbers are discussed in chapter 4 – each number is the sum of the 

previous four, and generalised other such sequences – of Fibonacci, Lucas and Tribonacci 

numbers.  

In chapter 5, we discuss approaches to Fermat’s last theorem.  

Chapter 6 provides some exploration by elementary methods of Beal’s conjecture – which is 

a generalisation of Fermat’s last theorem. 

I would like to thank especially Doly García for discussions and Roger Goodwin for his 

advice, and to thank the mathematics department of the University of Sussex in providing 

facilities for checking some long computations on Quadronacci numbers. 
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